

Tracking fast charged particles through GLAD

Magnetic rigidity is the main experimental observable:

$$
B \rho[\mathrm{Tm}]=3.3356 \times \frac{P}{Q}[\mathrm{GeV} / \mathrm{c} / \mathrm{e}]=\frac{A}{Z} \frac{m_{u} \beta \gamma}{e}
$$

- Large acceptance spectrometer: measuring large B-rho spread
\Rightarrow bending angles from 0 to ~ 40 deg
\Rightarrow incoming angles: max ~ 80 mrad (4.6 deg), depending on the target position
neutrons

- Isotopes with different A/Z may have the same B-rho
\Rightarrow Need particle velocity for complete A/Z id
\Rightarrow Trajectory length + ToF
- Real B-field is not homogeneous
\Rightarrow field integrals depend on the entrance point and in/out angles

Tracking schematics in a typical R3B experiment

Missing mass: incoming and outgoing angles

$$
S_{p}=\left(\beta \gamma\left(\vec{p}_{1}+\vec{p}_{2}\right)_{\text {II }}-(\gamma-1) m_{p}-\gamma\left(T_{1}+T_{2}\right)-\frac{q^{2}}{2 M_{A-1}}\right.
$$

Invariant mass: only outgoing angles

$$
E_{r e l}=\left(\sqrt{\sum_{i} m_{i}^{2}+\sum_{i \neq j} \gamma_{i} \gamma_{j} m_{i} m_{j}\left(1-\left(\beta_{i} \beta_{j} \cos \varangle[i, j]\right)\right.}-\sum_{i} m_{i}\right) \cdot c^{2}
$$

Every reaction has it's own reference frame!

Tracking schematics in a typical R3B experiment

Reconstructing ToF, velocity, flight path

We need to know here:
Z, A, Brho , $\mathrm{P}_{\mathrm{x}}, \mathrm{P}_{\mathrm{y}}, \mathrm{P}_{\mathrm{z}}, \mathrm{x}, \mathrm{y}, \mathrm{z}$

Tracking schematics in a typical R3B experiment

Reconstructing ToF, velocity, flight path

We need to know here:
Z, A, Brho , Px, P_{y}, P_{z}, x, y, z

Tracking schematics in a typical R3B experiment

Reconstructing ToF, velocity, flight path

We need to know here:
Z, A, Brho , Px, P_{y}, P_{z}, x, y, z

Trajectories of ${ }^{124} \mathrm{Sn}$ isotopes $\sim 900 \mathrm{MeV} / \mathrm{u}(\mathrm{s} 515)$

- Calculating trajectories based on one-step Runge-Kuta propagator from FairRKPropagator class \Rightarrow Implementation in R3BTPropagator class of R3BRoot
- Sampling (partial) information of the ion trajectory at in a few positions (detectors)
o Track variable (Brho, flight path, angles etc.) is expected to be function of the measured coordinates, e.g.:

$$
B \rho=f\left(x_{0}, y_{0}, z_{0}, x_{1}, y_{1}, x_{2}, y_{2}, z_{2}\right)
$$

General concept of the multi-dimensional fitting

- P is a known quantity of interest (e.g. Brho, P / Z, trajectory length, angle, etc.)
- P depends on N observables $\left(x_{1}, \ldots, x_{N}\right)$ e. g.
- Use R3BTPropagator to obtain $\left(x_{1}, \ldots, x_{N}\right)$ for a particle with given A, Z, P, theta, phi, etc.
- Collect a training sample of several (thousands) trajectories and form tuples ($x j, P j, E J$) varying initial particle's energy/angles - $x_{j}=\left(x_{1, j}, \ldots, x_{N, j}\right)$ - are N observables (detector hits) in the event j
- P_{j} - known value in the event j
- E_{j} - known error of P_{j} in the event j
- Use TMultiDimFit class from ROOT to find the parameterization:

$$
P_{p}(\mathbf{x})=\sum_{l=1}^{L} c_{l} \prod_{i=1}^{N} p_{l i}\left(x_{i}\right)=\sum_{l=1}^{L} c_{l} F_{l}(\mathbf{x})
$$

such that

$$
S=\sum_{j=1}^{M}\left(P_{j}-P_{p}\left(\mathbf{x}_{j}\right)\right)^{2}
$$

is minimal

[^0]- Optional usage of the Principle Component Analysis (PCA) to find the parameterisation in the orthogonal basis
- The resulting MDF function is stored as txt file which can be read by R3BMDFWrapper to perform the tracking of real data

Example of MDF paramterization for P/Q in s515

Parameterization for P / Q using Chebyshev polynomials:
Main set of tracking variables
Normalised variables:

$$
\begin{aligned}
& y _0=1+2 *\left(x _0-7.627\right) /(7.627+7.648) \\
& y _1=1+2 *\left(x _1-7.935\right) /(7.935+7.601) \\
& y _2=1+2 *\left(x _2-169.8\right) /(169.8-159.8) \\
& y _3=1+2 *\left(x _3+79.15\right) /(-79.15+154.4) \\
& y _4=1+2 *\left(x _4-720.0\right) /(720.0-688.1) \\
& y _5=1+2 *\left(x _5+305.8\right) /(-305.8+523.4) \\
& y _6=1+2 *\left(x _6-1660 .\right) /(1660 .-1584 .) \\
& y _7=1+2 *\left(x _7-0.03134\right) /(0.03134+0.02279)
\end{aligned}
$$

$$
\begin{aligned}
& \text { x_0 }=X_{m w p c} \\
& \mathrm{x} _1=\mathrm{Y}_{\mathrm{mwpc}} \\
& x_{-} 2=Z_{m w p} \\
& x _3=X_{\text {fib10 }} \\
& x_{-} 4=Z_{\text {fib10 }} \\
& x _5=X_{\text {fib11 }} \\
& x_{-6}=X_{\text {fib11 }} \\
& x_{-} 7=\left(Y_{\text {fib12 }}-Y_{\text {mwpc }}\right) /\left(Z_{\text {fib12 }}-Z_{\text {mwpc }}\right)
\end{aligned}
$$

 y_6-0.01227 * C_4(y_5) —> many more terms

Relative precision obtained:	0.0001723
Maximum powers used:	42144442

Example of MDF training results for S515

Example of MDF mass reconstruction in S515

Mass resolution (sigma) ≈ 0.24 mass units

$$
d A / A \approx 0.2 \% \text { (expecting } \sim 0.1 \% \text { in further analysis) }
$$

Example of MDF reconstruction in other experiments

Scattering angles from the target (no alignment) s522 run 131

Summary

- MDF is a simple and efficient tracking method in a complex magnetic field
- Easy to configure for different setup configurations, tracking variables, detectors etc.
- Proved to work for various experiments (s515, s522, s509, s473, s454 + SAMURAI, Dubna, etc.)
- MDF functions can be used to perform self-consistent alignment of the all inseam detectors
- Recent updates for the R3BTPropagator to improve particle tracking in air (courtesy of M. Xarepe)
- Proton tracking with RPC: limited position info + ToF
- Experiment specific MDF functions - need to be prepared individually
- Is there a universal MDF function for any R3B experiment?

Example of MDF reconstruction in S515

[^0]: $p_{l i}\left(x_{i}\right)$ - Monomials, Legendre or Chebyshev polynomials of x_{i} C_{l} - coefficients determined by the fit

