

Multi-dimensional fit approach for particle tracking through GLAD Valerii Panin (GSI)

- R3B Collaboration Meeting, Budapest 22-26 May 2023

Tracking fast charged particles through GLAD

Magnetic rigidity is the main experimental observable: $oldsymbol{O}$

$$B\rho[\text{Tm}] = 3.3356 \times \frac{P}{Q}[\text{GeV/c/e}] = \frac{A}{Z} \frac{m_u \beta \gamma}{e}$$

• Large acceptance spectrometer: measuring large B-rho spread

- ➡ bending angles from 0 to ~40 deg
- ➡ incoming angles: max ~80 mrad (4.6 deg), depending on the target position

Isotopes with different A/Z may have the same B-rho

- ➡ Need particle velocity for complete A/Z id
 - ➡ Trajectory length + ToF
- Real B-field is not homogeneous

Missing mass: incoming and outgoing angles

$$S_{p} = \beta \gamma (\vec{p}_{1} + \vec{p}_{2})_{//} - (\gamma - 1)m_{p} - \gamma (T_{1} + T_{2}) - \frac{q^{2}}{2M_{A-1}}$$

Invariant mass: only outgoing angles

Every reaction has it's own reference frame!

Z, A, Brho, P_x, P_y, P_z, x, y, z

 $Z, A, Brho, P_x, P_y, P_z, x, y, z$

Z, A, Brho, P_x, P_y, P_z, x, y, z

Trajectories of ¹²⁴Sn isotopes ~900MeV/u (s515)

- Calculating trajectories based on one-step Runge-Kuta propagator from FairRKPropagator class Implementation in R3BTPropagator class of R3BRoot
- Sampling (partial) information of the ion trajectory at in a few positions (detectors)
- Track variable (Brho, flight path, angles etc.) is expected to be function of the measured coordinates, e.g.:

$$B\rho = f(x_0, y_0)$$

 $y_0, z_0, x_1, y_1, x_2, y_2, z_2)$

General concept of the multi-dimensional fitting

- P is a known quantity of interest (e.g. Brho, P/Z, trajectory length, angle, etc.)
- P depends on N observables (x_1, \ldots, x_N) e. g.
- Use R3BTPropagator to obtain (x_1, \ldots, x_N) for a particle with given A, Z, P, theta, phi, etc.
- - $x_i = (x_{1,i}, \dots, x_{N,i})$ are N observables (detector hits) in the event j
 - P_i known value in the event j
 - E_i known error of P_i in the event j
- Use TMultiDimFit class from ROOT to find the parameterization:

$$P_{p}(\mathbf{x}) = \sum_{l=1}^{L} c_{l} \prod_{i=1}^{N} p_{li}(x_{i}) = \sum_{l=1}^{L} c_{l} F_{l}(\mathbf{x})$$

 $p_{ii}(x_i)$ - Monomials, Legendre or Chebyshev polynomials of x_i *c*_{*l*} - coefficients determined by the fit

• Collect a training sample of several (thousands) trajectories and form tuples (xj, Pj, Ej) varying initial particle's energy/angles

uch that

$$S = \sum_{j=1}^{M} (P_j - P_p(\mathbf{x}_j))^2$$

is minimal

• Optional usage of the Principle Component Analysis (PCA) to find the parameterisation in the orthogonal basis • The resulting MDF function is stored as txt file which can be read by R3BMDFWrapper to perform the tracking of real data

Example of MDF paramterization for P/Q in s515

Parameterization for P/Q using Chebyshev polynomials:

Normalised variables:

 $\mathbf{y} = 1 + 2 * (\mathbf{x} = 0 - 7.627) / (7.627 + 7.648)$ **y** 1 = 1 + 2 * (x 1 - 7.935) / (7.935 + 7.601)y = 1 + 2 * (x = 2 - 169.8) / (169.8 - 159.8) $y_3 = 1 + 2 * (x_3 + 79.15) / (-79.15 + 154.4)$ $y_4 = 1 + 2 * (x_4 - 720.0) / (720.0 - 688.1)$ $y_5 = 1 + 2 * (x_5 + 305.8) / (-305.8 + 523.4)$ $y_6 = 1 + 2 * (x_6 - 1660.) / (1660. - 1584.)$ y 7 = 1 + 2 * (x 7 - 0.03134) / (0.03134 + 0.02279)

F(y_0, y_1, y_2, y_3, y_4, y_5, y_6, y_7) = 4.610 + 3.026 * y_6 + 0.1485 * y_0 + 4.035 * y_5 - 4.036 * y_3 - 0.004515 * C_3(y_4) + 0.01324 * y_3 * C_2(y_4)- 0.5629 * y_4+ 0.4459 * C_2(y_6)+ 0.1344 * y_0 * y_6+ 2.404 * C_2(y_5)- 8.498 * y_3 * y_5 + 0.07895 * y_4 * C_2(y_5) * y 6 - 0.01227 * C 4(y 5) -> many more terms

Relative precision obtained: 0.0001723 Maximum powers used: 4214442 Main set of tracking variables

Example of MDF training results for S515

Example of MDF mass reconstruction in S515

Charge Z in MUSIC

Using beta value from FRS

4 Mass

Mass resolution (sigma) ≈ 0.24 mass units

 $dA/A \approx 0.2\%$ (expecting ~0.1% in further analysis)

Example of MDF reconstruction in other experiments

Courtesy of Andrea Lagni

N

A/Z

Using beta value from FRS

slice_py_of_AoZ_v_tofd Counts Entries 35561 A/Q distribution ¹⁴C 450 2.404 Mean 0.2916 Std Dev 400 ¹⁶C S509 350 ¹³C 300 ¹⁵C (cut) 250 ¹⁷C 200 ¹⁸C 100 0 1.6 2.8 2.2 2.6 3.2 3.4 1.8 2 2.4 3 AoZ A/Z

Scattering angles from the target (no alignment) s522 run 131

TXD:(15_X-11_X)()15_Z-11_Z) (N_glob_tracks>0 && N_glob_tracks<5 && N_out_tracks==1 && ((Tpat&4)==4 II (Tpat&8)==8 && (Tpat&16)==16)

TYD-(116_Y-12_Y)(116_Z-12_Z) (N_glob_tracks=0 && N_glob_tracks=5 && N_out_tracks==1 && ((Tpat54)==+4 II (Tpat58)===6 && (Tpat516)===16]}

TY0 diff: (FOOT - MDF) [rad]

TYD:(116_Y-12_Y)((116_Z-12_Z) (N_glob_tracks>0 && N_glob_tracks<5 && N_out_tracks=1 && ((Tpat84)==4 II (Tpat84)==8 && (Tpat816)==16))

TXD-(115_X-11_X)/(115_Z-11_Z) (N_glob_tracks=0 && N_glob_tracks=5 && N_out_tracks==1 && ((Tpat&4)==4 II (Tpat&8)==8 && (Tpat&16)==16))

TY0 diff: (FOOT - MDF) [rad]

- MDF is a simple and efficient tracking method in a complex magnetic field
- Easy to configure for different setup configurations, tracking variables, detectors etc.
- Proved to work for various experiments (s515, s522, s509, s473, s454 + SAMURAI, Dubna, etc.)
- MDF functions can be used to perform self-consistent alignment of the all inseam detectors
- Recent updates for the R3BTPropagator to improve particle tracking in air (courtesy of M. Xarepe)
 - Proton tracking with RPC: limited position info + ToF
- Experiment specific MDF functions need to be prepared individually
- Is there a universal MDF function for any R3B experiment?

Summary

Example of MDF reconstruction in S515

PoQ:frs_Brho

