
Fast flexible online 
monitoring

Hans Törnqvist
R3B Collaboration Meeting, Budapest, 2023-05-22

https://github.com/hanstt/plutt



Current state

● R3BRoot
○ Calibrated data, simulations, online plots,

the ROOT kit at hand, ie the business
○ JSROOT is pretty good, but doesn’t do online cutting?
○ There are always several versions when beam-time hits

● R3BMon
○ “100%” up-time hacked unpacker + JS+WS web-page
○ Unpackers should not analyse
○ plotly is cute, but does a lot less than JSROOT

● During my time at GSI,
felt like something was missing…



What would be nice to have online?

● Scripting sources, transformations, histogramming
● A “full” setup config that could be e-mailed
● Simple on-the-fly calibration
● Plotting all data, no histogram limits
● Plot detector Grunka vs detector Mojäng for the 1st time in 30s
● Clicky-cut on blob in one plot, see what another plot gives
● Fast zooming and projection
● Light-weight in code-size, prerequisites, startup
● Remote shifters able to do remote online work
● If all services are down, should work even with ssh+X11
● It should be “easy” to use at 4:00 in the morning!



plutt – yet another thing to learn, sorry

● Started as some tests on top of ucesb
○ Is it possible to adapt in runtime to ucesb structs?
○ Match two sides of a detector and plot the matching indices with scripting
○ Is X11 over ssh completely useless? In case VNC or online services crash

● It grew… Current state:
○ Good old C++11
○ Auto ucesb struct parsing and TTree *h101
○ Histograms auto-adjust to all data
○ Zooming, projecting, polygonal cutting
○ On-the-fly fine-time calibration, tpat-aware pedestals
○ Auto multi-peak finding & fitting with simplified SNIP + nlopt (super WIP)
○ Trigger maps for FPGA-style TDC:s
○ Linear fit calibration
○ SDL (easily replaced…), user input buffering for slow clients



Example

● Invocation: ./plutt -f my_config.r3bp -r h101 my_file.root
● FOOT energy vs channel:

○ hist2d("FOOT1", FOOT1) OR hist2d("FOOT1", FOOT1.v, FOOT1.I)
● Off-spill pedestal subtraction:

○ offspill = tpat(TPAT, 12--15)
f1, f1std = pedestal(FOOT1, 6, tpat=offspill)
hist2d("FOOT1", f1, logz, binsx=640)
hist2d(“FOOT1 std”, f1std, logz, binsx=640)

● Apply cut on FOOT clusters:
○ f1x, f1e, f1eta = cluster(f1)

hist2d("FOOT1 eta cut", f1e, f1eta, cut("cut1.txt"))

● Fine-time calibrated TOFD:
○ tofd_p1t1l = coarse_fine(TOFD_P1T1TCL, TOFD_P1T1TFL, tamex3)

● And so on, but now, we’ll do it live!



Some thoughts

● Ucesb input interesting for R3BRoot?
○ Config file parsed, signals resolved, we have a list of missing signals SIG1,SIG2,…,

expect them to come from the unpacker
○ Ask unpacker to generate struct containing SIG1,SIG2,...
○ Parse macro blob to fetch signal type and variable array sizes
○ Allocate event storage, and bind with ext_data_struct* calls
○ Ie move lots of work from setting up readers and control-macros into core input

● Config file
○ flex+bison parser
○ Each data transformation is a node in a graph, there are currently 21 types
○ Graph “starts” with bindings to input stage, “ends” with histograms
○ One node executes at most once per event
○ Consolidate with Bastii’s nupeline?

● Data representation
○ STL-ified ucesb signals mi[], me[], v[], both from ucesb and ROOT inputs
○ Used as input and output of node which pipe values
○ Fast compact code to process data, data-oriented over object-oriented!

● Plotting
○ Histogramming, rebinning etc all custom, super-specialized and unreliable… On top on of SDL primitives



TODO

● This will explode once anybody else gets their hands on it…
● Not so hard to do:

○ Slap LGPL on it so it can go public
○ Config-file watcher for live plotting updates (probably harder than I think)
○ Input watcher, eg auto-load new ROOT files
○ More tests, always
○ README is there, but it’s getting old…

● Longer term:
○ Introspection/reflection of TTree + arrays of objects
○ More robust peak finding
○ Replace R3BMon?
○ Make it beautiful
○ Make it go even faster, lots of “safe” slow code
○ Abandon immediate GUI style for more flexible widgeting

● BUT, this is a small part of the job, it won’t get much more powerful

Finished!



demo1



demo2



demo3



demo4



demo5



demo6



demo7



demo8



demo9



demo10



demo11



demo12



demo13


