

Total Reaction Cross-Section Measurements in the S444 Commissioning Experiment

Supported by BMBF 05P21WOFN1 and 05P19WOFN1.

The results presented here are based on the experiment s444/s473, which was performed at the beam line/infrastructure Cave C at the GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany) in the frame of FAIR Phase-0.

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – EXC 2094 – 390783311.

Lukas Ponnath

R3B Week - Budapest May 2023

Overview: Setup & Total Reaction Cross-Section

Sensitivity of Carbon Identification

Influence of Position Dependent Efficiency

FAIR S444 Commissioning Experiment

First common operation of GLAD and R³B detectors

- **Event-Selection:**
- Position Measurement & Veto
- Time Measurement
- Charge Identification ٠

Silicon- & Fiber-Tracking:

- Position Measurement
- Charge Identification after the target

- → Beam: 400 1000 AMeV ¹²C
- → Targets: C, CH₂ (different thickness)

Precision Measurement:

Energy dependence of the total reaction cross-section of $^{12}C \rightarrow ^{12}C$

(Tom Aumann)

Total reaction cross-section: $\sigma_R = \sigma_I + \sigma_{inel}$

Total interaction cross-section \mathcal{O}_I : The projectile changes its identity. At least one nucleon is removed.

Total inelastic cross-section \mathcal{O}_{inel} : The projectile is excited to a bound state. No nucleon is removed.

Total Reaction Cross Section ${}^{12}C \rightarrow {}^{12}C$

Exclude reactions in Setup:

Target-Out

Transmission method:

$$\sigma_{R} = -\frac{1}{N_{t}} \ln \left(\frac{N_{2}^{i} / N_{1}^{i}}{N_{2}^{o} / N_{1}^{o}} \right)$$

Exclude reactions in Setup:

Target-Out

Transmission method:

$$\sigma_{R} = -\frac{1}{N_{t}} \ln \left(\frac{N_{2}^{i}/N_{1}^{i}}{N_{2}^{o}/N_{1}^{o}} \right)$$

- \rightarrow N₁ is a target specific constant (density, Thickness)
- \rightarrow N₁, number of incident ¹²C nuclei (stable beam, Event-Selection)

Exclude reactions in Setup:

Target-Out

Transmission method:

Challenge: Time- & Rate-depended Efficiency & geometrical Acceptance of Detectors

- $\rightarrow N_{\downarrow}$ is a target specific constant (density, Thickness)
- \rightarrow N₁, number of incident ¹²C nuclei (stable beam, Event-Selection)
- \rightarrow N₂, number of non-reacting ¹²C nuclei, identified after the target (that's our big challenge)

Lukas Ponnath

R3B Week May 2023

Number of non-reacting Nuclei

Carbon Identification шп Is σ_1 sensitive to the cut-width? $\mathsf{N}_{\mathsf{Q}=6}$ = Plane1 <u>or</u> Plane2 saw a particle with Q = (6. +/- 0.5)(>99.9993 %) 4 overlapping 10 Charge Plane2 Planes 10³ Beam Х 10² 10 44 Bars $N_2 = \frac{N_{Q=6} \cdot R^{(12}C)}{2}$ $\varepsilon = \frac{N_{Q=6}^{Plane \, 1 \lor 2}}{N_{Q=6}^{Plane \, 3 \land 4}} = 0.999916 \,(17)\%$ ٥ 10 Charge Plane1 Check efficiency of Carbon identification:

Dependance on Cut Width – Missing Particles

ΠП

Dependance on Cut Width - False Particles

ПΠ

Acceptance-Correction

Acceptance-Correction

Fiber Sweep-Run

[1] I.Tanihata et al. (Radioactive Nuclear Beams 1990), M. Takechi et al. (PRC – 79 2009) , A. Ozawa et al. (Nuc. Phy. A – 691 2001)

EOL data: E.A. Teixeira, T. Aumann, C.A. Bertulani, B.V. Carlson (Eur. Phys. J.A - 58:205 2022)

<u>Status:</u>

- Experimental results are in agreement with previous experiments at low energies
- Theory overestimates exp. results at high energies
- No evidence for underestimation in analysis
 - Possible explanation in model?
 - → Clustering in ¹²C
 - Neutron Density
 - → QCD effect?

Thank you!

Paper Draft is (almost) ready

CALIFA @ Technical University of Munich (TUM)

Roman Gernhäuser, Philipp Klenze, Lukas Ponnath, Tobias Jenegger

 $V_{OL}(\vec{b}) \propto \sigma_{NN} \cdot \int \rho_{P}(\vec{r}) \rho_{T}(\vec{r}-\vec{b})$

Lukas Ponnath

PSI Seminar May 2023

2. Gaspycnometer

3. By Hand / CAD

High uncertainties in all measurements! But: A density < 1.84 g/cm³ could be excluded

Lukas Ponnath

R3B Week May 2023

Total Reaction Cross-Section

Number of target scattering centers:

$$N_t = \frac{\rho_t \cdot d_t \cdot N_A}{A_t}$$

where

- ho_t is the volume density of the target (1.84 g/cm³)
- d_t is the target thickness
- N_A is Avogadro's constant (6.02214*10²³ mol⁻¹)
- A_t is the molar mass of the target (12.0107 u)

$$\sigma_{R} = -\frac{1}{N_{t}} \ln \left(\frac{N_{2}^{i}/N_{1}^{i}}{N_{2}^{o}/N_{1}^{o}} \right)$$

Dt [cm]	Nt
0.5451	5.50334*10 ²³
1.0793	1.09904*10 ²⁴
2.1928	2.120248*10 ²⁵

Total Reaction Cross-Section

Exclude reactions in Setup:

Target-Out

Transmission method:

 $\sigma_{R} = -\frac{1}{N_{t}} \ln \left(\frac{N_{2}^{\prime}/N_{1}^{\prime}}{N_{2}^{\prime}/N_{1}^{\prime}} \right)$

Challenge: Time- & Rate-depended Efficiency & geometrical Acceptance of Detectors

- $\rightarrow N_{\downarrow}$ is a target specific constant (density, Thickness)
- \rightarrow N₁, number of incident ¹²C nuclei (stable beam, Event-Selection)
- \rightarrow N₂, number of non-reacting ¹²C nuclei, identified after the target (that's our big challenge)

Lukas Ponnath

ПΠ

All Permutations

Problem: High Multiplicity due to light cross-talk How can we find the correct Hit / the correct X-Position?

Isotope-Correction

Isotope-Correction

Isotopes with different mass (A) have a different bending-radius (ρ) in a const. Magentic field (B) .

29