Simulation framework for the digitization module of scintillators and its implementation in NeuLAND

Yanzhao Wang, Jan Mayer, Igor Gasparic, and Andreas Zilges

Institute for Nuclear Physics, University of Cologne

R3B Conference Budapest 2023

Email: ywang@ikp.uni-koeln.de

NeuLAND setup in R³B

K. Boretzky et al., Nucl. Instrum. Methods. Phys. Res. B 1014, 165701 (2021)

NeuLAND setup in R³B

K. Boretzky et al., Nucl. Instrum. Methods. Phys. Res. B 1014, 165701 (2021)

NeuLAND setup in R³B

K. Boretzky et al., Nucl. Instrum. Methods. Phys. Res. B 1014, 165701 (2021)

Method 1: Clustering ¹

Method 2: Bayes WCP

$$P(H|\vec{\mathbf{E}}) = P(H) \frac{P(\vec{\mathbf{E}}|H)}{\sum_{h} P(\vec{\mathbf{E}}|H_{h})P(H_{h})}$$

Method 3: Convolutional neural network

 $^{^1\,{\}rm Technical}$ Report for the Design, Construction and Commissioning of NeuLAND 2011.

Validation?

Method 1: Clustering ¹

Method 2: Bayes WCP

$$P(H|\vec{\mathbf{E}}) = P(H) \frac{P(\vec{\mathbf{E}}|H)}{\sum_{h} P(\vec{\mathbf{E}}|H_{h})P(H_{h})}$$

Method 3: Convolutional neural network

 $^{^1\,{\}rm Technical}$ Report for the Design, Construction and Commissioning of NeuLAND 2011.

Method 1: Clustering ¹

Method 2: Bayes WCP

$$P(H|\vec{\mathbf{E}}) = P(H) \frac{P(\vec{\mathbf{E}}|H)}{\sum_{h} P(\vec{\mathbf{E}}|H_{h})P(H_{h})}$$

Method 3: Convolutional neural network

 $^{^{1}\, {\}it Technical Report for the Design, Construction and Commissioning of NeuLAND 2011.}$

Method 1: Clustering ¹

Method 2: Bayes WCP

$$P(H|\vec{\mathbf{E}}) = P(H) \frac{P(\vec{\mathbf{E}}|H)}{\sum_{h} P(\vec{\mathbf{E}}|H_{h})P(H_{h})}$$

Method 3: Convolutional neural network

 $^{1}\, {\it Technical Report for the Design, Construction and Commissioning of NeuLAND 2011.}$

Method 1: Clustering ¹

Method 2: Bayes WCP

$$P(H|\vec{\mathbf{E}}) = P(H) \frac{P(\vec{\mathbf{E}}|H)}{\sum_{h} P(\vec{\mathbf{E}}|H_{h})P(H_{h})}$$

Method 3: Convolutional neural network

 $^{1}\, {\it Technical Report for the Design, Construction and Commissioning of NeuLAND 2011.}$

Interactions

University of Cologne | AG Zilges | Yanzhao Wang

¹Photomultiplier tubes: basics and applications, 3a, Hamamatsu (Nov. 2007), p. 197

PMT saturation¹

¹Photomultiplier tubes: basics and applications, 3a, Hamamatsu (Nov. 2007), p. 197

PMT saturation¹

Light attenuation

$$Y_{PMT} = Y_{edep} \exp(-\alpha \cdot L)$$

 $\alpha :$ Attenuation factor

¹Photomultiplier tubes: basics and applications, 3a, Hamamatsu (Nov. 2007), p. 197

¹Photomultiplier tubes: basics and applications, 3a, Hamamatsu (Nov. 2007), p. 197

University of Cologne | AG Zilges | Yanzhao Wang

PMT saturation¹

$\min \, \Delta = \begin{cases} |E_1/E_2 \cdot e^{\alpha c(t_1 - t_2)} - 1| \ , & t_1 > t_2 \\ |E_2/E_1 \cdot e^{\alpha c(t_2 - t_1)} - 1| \ , & t_2 > t_1 \end{cases}$

Simulation Framework for the Digitization Module of Scintillators 5 / 10

Simulation steps

- Apply threshold
- Perform pileup of PMT signals (addition)
- \bigcirc PMT signals \Rightarrow FQT signals
- Perform pileup of FQT signals (merge)
- Inergy and time value smearing

Simulation steps

- Apply threshold
- Perform pileup of PMT signals (addition)
- Perform pileup of FQT signals (merge)

Energy and time value smearing

Simulation steps

- Apply threshold
- Perform pileup of PMT signals (addition)
- Perform pileup of FQT signals (merge)
- Sentergy and time value smearing

Total energy deposition

Energy deposition of hits

Comparisons to Tacquila and mockup

University of Cologne | AG Zilges | Yanzhao Wang

Summary and outlook

In this talk

- simulation on scintillation bars and digitization channels
- multi-hit capability
- distribution on total energy deposition and hit energies
- better performance on low energy filtering

What to do next

- integration time window on Tamex
- comparison to real calibrated data
- applications on other detectors

