Status of S091 experiment

Probing nucleon-nucleon correlations in atomic nuclei via (p,pd) QFS reactions

Fragment acceptance simulation

Wei Zhang

25/05/2023

Motivation

In the presence of the SRC components of the NN interaction,

$$
|q p\rangle \sim 80 \%|p\rangle+20 \%|h\rangle \otimes|q d\rangle
$$

SRCs are expected to contribute with a dependence on the isospin asymmetry, and hence an A dependence of the (p, pd) cross section is expected.

Kinematics for (p, pd) at $480 \mathrm{MeV} /$ nucleon

Fragment Arm @14 deg

S091

12C(p,pd) 10B reaction - Distributions at the Target

Incoming beam ${ }^{12} \mathrm{C}$: $480 \mathrm{MeV} /$ nucleon
Proposed beam rate: $5 \times 10^{4} \mathrm{pps}$
The LiH target cell radius is 15 mm , its length is 5 cm
In this simulation, the incoming beam or outgoing fragments were assumed to have Gaussian distributions at X and Y directions with $\operatorname{Gaus}(0,0.5 \mathrm{~cm})$ and have a Uniform distribution at Z direction with Uniform $(0,5.0 \mathrm{~cm})$.

Fragment ${ }^{10} \mathrm{~B}$ Momentum distribution

Incoming beam ${ }^{12} \mathrm{C}$: $480 \mathrm{MeV} /$ nucleon
Internal momentum spread (Gauss) MOM_SIGMA= $130 \mathrm{MeV} / \mathrm{c}$
Considering a Gaussian distribution with (sigma $=0.5 \%$) for incoming beams in three directions

1 momentum sigma corresponds to an angle < 13 mrad.

Target at nominal position

Target at shifted upstream 70 cm

Results

S522

Transmission (\%)	${ }^{12} \mathrm{C}$	${ }^{11} \mathrm{C}$	${ }^{11} \mathrm{~B}$	${ }^{10} \mathrm{~B}$
Fi 32	93.7	92.0	92.4	92.9
Fi31	91.8	79.3	83.5	86.7
TofD Plane1	86.7	85.8	86.0	86.6
TofD Plane1 \&\& Fibers	86.7	75.1	78.4	81.8

Transmission (\%)	${ }^{12} \mathrm{C}$	${ }^{11} \mathrm{C}$	${ }^{11} \mathrm{~B}$	${ }^{10} \mathrm{~B}$
Fi 32	93.4	90.3	91.1	91.3
Fi 31	91.5	76.3	81.6	83.8
TofD Plane1	86.2	84.5	85.4	86.1
TofD Plane1 \&\& Fibers	86.2	72.2	76.5	78.9

Distance between Fi30 and Fi33 is now 50 cm .
TofD at $Z=916 \mathrm{~cm}$

Fi31Point.fX

Transmission (\%)	${ }^{12} \mathrm{C}$	${ }^{11} \mathrm{C}$	${ }^{11} \mathrm{~B}$	${ }^{10} \mathrm{~B}$
Fi 32	93.4	90.3	91.1	91.3
Fi31	91.6	83.5	86.3	87.4
TofD Plane1	88.6	88.5	88.0	88.7
TofD Plane1 \&\& Fibers	88.6	80.2	82.4	83.7

Investigate fragment arm at 18 deg (instead of 14 deg)

Transmission (\%)	${ }^{12} \mathrm{C}$	${ }^{11} \mathrm{C}$	${ }^{11} \mathrm{~B}$	${ }^{10} \mathrm{~B}$
Fi 32	94.2	93.4	93.6	93.8
Fi31	92.4	88.3	89.5	91.2
TofD Plane1	87.9	87.6	87.6	87.8
TofD Plane1 \&\& Fibers	87.6	84.0	84.5	86.2

Fibre detectors can be moved closer:
\rightarrow Increases Transmission
Any constraints to do this?

ToDo:

Investigate Proton distribution on RPCs
Consider support structures/frames
Investigate the situations for 10C and 16C and finalize the positions for these detectors

Are the suggested distances from magnet to detectors and between them realistic?

Any other constraints?
$\mathrm{R}^{3} \mathrm{~B}$

Fragment ${ }^{11} \mathrm{~B}$ Momentum distribution

Incoming beam ${ }^{12} \mathrm{C}: 480 \mathrm{MeV} /$ nucleon
Proposed beam rate: 5×10^{4} pps
Internal momentum spread (Gauss) MOM_SIGMA $=100 \mathrm{MeV} / \mathrm{c}$
After considering a momentum distribution for incoming beam particles with a Gaussian distribution (sigma $=0.5 \%$) in three directions, the momentum distribution for fragment 11B are shown in red line.

