Analysis Report: Experiment s467

GSI

FAIR

This work is supported by BMBF under contract 05P19RDFN1 and 05P21RDFN2 and the Helmholtz Research Academy Hesse for FAIR- HFHF

25.05.2023 | Christian Sürder | WG Kröll | TU Darmstadt | R3B Collaboration Meeting, Budapest | Slide 1

Start of the story: Test case ${}^{36}Ar \rightarrow {}^{35}Cl$

- Selection: ${}^{36}Ar \rightarrow {}^{35}Cl$:
- All hits E<20MeV
 - Cluster algorithm default cluster size 0.25 rad x 0.25 rad

25.05.2023 | Christian Sürder | WG Kröll | TU Darmstadt | R3B Collaboration Meeting, Budapest | Slide 2

Gating on QFS reactions & gammas

Gating on QFS reactions & gammas

Step by step approach

- Goal:
 - Check the data for consistency
 - Check if the analysis code is working properly
 - Learn the details of the calculations
 - Are the amount of gammas we see reasonable?

Step by step approach

- Goal:
 - Check the data for consistency
 - Check if the analysis code is working properly
 - Learn the details of the calculations
 - Are the amount of gammas we see reasonable?
- Pick the test case ³⁶Ar@405 MeV/A and search for available data
 - Total reaction cross sections on C target at 1GeV/A available
 - Total reaction cross sections on C and H at 361 MeV/A available

Step by step approach

- Goal:
 - Check the data for consistency
 - Check if the analysis code is working properly
 - Learn the details of the calculations
 - Are the amount of gammas we see reasonable?
- Pick the test case ³⁶Ar@405 MeV/A and search for available data
 - Total reaction cross sections on C target at 1GeV/A available
 - Total reaction cross sections on C and H at 361 MeV/A available
- Produce the total reaction cross sections and do a sanity check
 - FRS and Tracking data are okay, analysis code works properly and the calculations are correct

- Select 36 Ar as incoming in FRS (I_X)
- Count the not reacted 36 Ar in tracking (U_x) and subtract the incoming to get the number of reacted particles

- Select ³⁶Ar as incoming in FRS (I_X)
- Count the not reacted 36 Ar in tracking (U_x) and subtract the incoming to get the number of reacted particles

$$\sigma_I = \frac{R_I}{I_I} \cdot \frac{1}{T_T} = \frac{R_I}{I_I} \cdot \frac{A_T}{\rho_T \cdot d_T \cdot N_A}$$

- Select ³⁶Ar as incoming in FRS (I_x)
- Count the not reacted 36 Ar in tracking (U_x) and subtract the incoming to get the number of reacted particles

$$\sigma_I = \frac{R_I}{I_I} \cdot \frac{1}{T_T} = \frac{R_I}{I_I} \cdot \frac{A_T}{\rho_T \cdot d_T \cdot N_A} \qquad \qquad \mathbf{\sigma}_{\mathsf{I}} \sim \mathbf{\sigma}_{\mathsf{R}}$$

- Select ³⁶Ar as incoming in FRS (I_x)
- Count the not reacted 36 Ar in tracking (U_x) and subtract the incoming to get the number of reacted particles

$$\sigma_I = \frac{R_I}{I_I} \cdot \frac{1}{T_T} = \frac{R_I}{I_I} \cdot \frac{A_T}{\rho_T \cdot d_T \cdot N_A} \qquad \qquad \mathbf{\sigma}_{\mathsf{I}} \sim \mathbf{\sigma}_{\mathsf{R}}$$

 Correct with the empty runs for efficiency losses and reactions with the detectors and souroundings

$$R_C({}^{36}Ar) = I_C({}^{36}Ar) - U_C({}^{36}Ar) - \frac{I_C({}^{36}Ar)}{I_{em}({}^{36}Ar)} \cdot \left(I_{em}({}^{36}Ar) - U_{em}({}^{36}Ar)\right)$$

Total reaction cross section ³⁶Ar on C

- I_C: 881444, U_C: 656828, I_{em}: 69370, U_{em}: 60805
- Target C: ρ=1.84 g/cm³, d=1.086 cm, A=12.0107 g/mol & N_A

Total reaction cross section ³⁶Ar on C

- I_C: 881444, U_C: 656828, I_{em}: 69370, U_{em}: 60805
- Target C: ρ=1.84 g/cm³, d=1.086 cm, A=12.0107 g/mol & N_A
- Total reaction cross section: 1311 mb @405 MeV/A

Total reaction cross section ³⁶Ar on C

- I_C : 881444, U_C : 656828, I_{em} : 69370, U_{em} : 60805
- Target C: ρ=1.84 g/cm³, d=1.086 cm, A=12.0107 g/mol & N_A
- Total reaction cross section: 1311 mb @405 MeV/A

1290(16) mb @361 MeV/A

Total and elementa	l fragmentation	cross-sections for	³⁶ Ar projectiles in mb
Etarget (A MeV)	361	361	359
Target	Н	С	Al
$\sigma_{ m tot}$	466.2 ± 21.9	1290.8 ± 16.1	1763.5 ± 26.9
$\sigma(Z_F = 17)$	86.7 ± 7.7	122.7 ± 4.7	154.9 ± 8.2
$\sigma(Z_F = 16)$	94.7 ± 8.2	124.3 ± 5.1	142.1 ± 7.6
$\sigma(Z_F = 15)$	51.3 ± 6.0	79.9 ± 3.6	93.7 ± 5.9
$\sigma(Z_F = 14)$	71.2 ± 7.2	91.3 ± 4.0	111.5 ± 6.9
$\sigma(Z_F = 13)$	27.5 ± 4.3	57.0 ± 3.1	78.5 ± 5.6
$\sigma(Z_F = 12)$	30.6 ± 4.8	71.9 ± 3.4	84.3 ± 5.7
$\sigma(Z_F = 11)$	13.6 ± 3.7	37.4 ± 2.7	48.1 ± 4.4
$\sigma(Z_F = 10)$	13.8 ± 3.5	48.3 ± 2.8	69.1 ± 4.9
$\sigma(Z_F = 9)$	5.5 ± 3.1	29.1 ± 2.4	38.1 ± 4.0
$\sigma(Z_F = 8)$	13.9 ± 3.7	53.4 ± 3.1	56.0 ± 4.4
$\sigma(Z_F = 7)$	8.5 ± 3.6	31.0 ± 2.7	42.0 ± 4.1

G. lancu et al. / Radiation Measurements 39 (2005) 525 - 533

1386(14) mb @940 MeV/A

Table 2

Interaction cross sections (σ_I) for Ar and Cl isotopes with carbon targets

Nucleus	Mean energy/A	$\sigma_{ m I}$	
	(MeV)	(mb)	
³¹ Ar	940	1358 ± 34	
32 Ar	940	1317 ± 33	
³³ Ar	950	1330 ± 32	
³⁴ Ar	950	1356 ± 14	
³⁵ Ar	955	1369 ± 15	
³⁶ Ar ^a	945	1386 ± 14	
³⁶ Ar ^b	940	1386 ± 23	
³⁷ Ar	945	1378 ± 15	
20			

A. Ozawa et al. / Nuclear Physics A 709 (2002) 60-72

• Two approaches:

$$- \qquad R_{H_2} = R_{CH_2} - \frac{I_{CH_2}}{I_{CT}} \frac{T_{CH_2}}{T_{CT}} \times R_{CT} - \left(1 - \frac{T_{CH_2}}{T_{CT}}\right) \frac{I_{CH_2}}{I_{ET}} \times R_{ET},$$

Valerii Panin, Fully Exclusive Measurements of Quasi-Free Single-Nucleon Knockout Reactions in Inverse Kinematics, 2012

- Subtract the reaction cross sections for C and CH2
- Both giving the same result

• Two approaches:

$$- \qquad R_{H_2} = R_{CH_2} - \frac{I_{CH_2}}{I_{CT}} \frac{T_{CH_2}}{T_{CT}} \times R_{CT} - \left(1 - \frac{T_{CH_2}}{T_{CT}}\right) \frac{I_{CH_2}}{I_{ET}} \times R_{ET},$$

Valerii Panin, Fully Exclusive Measurements of Quasi-Free Single-Nucleon Knockout Reactions in Inverse Kinematics, 2012

- Subtract the reaction cross sections for C and CH2
- Both giving the same result
- Total reaction cross section on Hydrogen: 355 mb @405 MeV/A

Total and elementation	al fragmentation	cross-sections for	³⁶ Ar projectiles in mb
Etarget (AMeV)	361	361	359
Target	Н	С	Al
$\sigma_{ m tot}$	466.2 ± 21.9	1290.8 ± 16.1	1763.5 ± 26.9
$\sigma(Z_F = 17)$	86.7 ± 7.7	122.7 ± 4.7	154.9 ± 8.2
$\sigma(Z_F = 16)$	94.7 ± 8.2	124.3 ± 5.1	142.1 ± 7.6
$\sigma(Z_F = 15)$	51.3 ± 6.0	79.9 ± 3.6	93.7 ± 5.9
$\sigma(Z_F = 14)$	71.2 ± 7.2	91.3 ± 4.0	111.5 ± 6.9
$\sigma(Z_F = 13)$	27.5 ± 4.3	57.0 ± 3.1	78.5 ± 5.6
$\sigma(Z_F = 12)$	30.6 ± 4.8	71.9 ± 3.4	84.3 ± 5.7
$\sigma(Z_F = 11)$	13.6 ± 3.7	37.4 ± 2.7	48.1 ± 4.4
$\sigma(Z_F = 10)$	13.8 ± 3.5	48.3 ± 2.8	69.1 ± 4.9
$\sigma(Z_F = 9)$	5.5 ± 3.1	29.1 ± 2.4	38.1 ± 4.0
$\sigma(Z_F = 8)$	13.9 ± 3.7	53.4 ± 3.1	56.0 ± 4.4
$\sigma(Z_F = 7)$	8.5 ± 3.6	31.0 ± 2.7	42.0 ± 4.1

G. lancu et al. / Radiation Measurements 39 (2005) 525 - 533

• Two approaches:

$$- \qquad R_{H_2} = R_{CH_2} - \frac{I_{CH_2}}{I_{CT}} \frac{T_{CH_2}}{T_{CT}} \times R_{CT} - \left(1 - \frac{T_{CH_2}}{T_{CT}}\right) \frac{I_{CH_2}}{I_{ET}} \times R_{ET},$$

Valerii Panin, Fully Exclusive Measurements of Quasi-Free Single-Nucleon Knockout Reactions in Inverse Kinematics, 2012

- Subtract the reaction cross sections for C and CH2
- Both giving the same result
- Total reaction cross section on Hydrogen: 355 mb @405 MeV/A

Total and elementa	1 fragmentation	cross-sections for	³⁶ Ar projectiles in mb
Etarget (A MeV)	361	361	359
Target	Н	С	Al
$\sigma_{ m tot}$	466.2 ± 21.9	1290.8 ± 16.1	1763.5 ± 26.9
$\sigma(Z_F = 17)$	86.7 ± 7.7	122.7 ± 4.7	154.9 ± 8.2
$\sigma(Z_F = 16)$	94.7 ± 8.2	124.3 ± 5.1	142.1 ± 7.6
$\sigma(Z_F = 15)$	51.3 ± 6.0	79.9 ± 3.6	93.7 ± 5.9
$\sigma(Z_F = 14)$	71.2 ± 7.2	91.3 ± 4.0	111.5 ± 6.9
$\sigma(Z_F = 13)$	27.5 ± 4.3	57.0 ± 3.1	78.5 ± 5.6
$\sigma(Z_F = 12)$	30.6 ± 4.8	71.9 ± 3.4	84.3 ± 5.7
$\sigma(Z_F = 11)$	13.6 ± 3.7	37.4 ± 2.7	48.1 ± 4.4
$\sigma(Z_F = 10)$	13.8 ± 3.5	48.3 ± 2.8	69.1 ± 4.9
$\sigma(Z_F = 9)$	5.5 ± 3.1	29.1 ± 2.4	38.1 ± 4.0
$\sigma(Z_F = 8)$	13.9 ± 3.7	53.4 ± 3.1	56.0 ± 4.4
$\sigma(Z_F = 7)$	8.5 ± 3.6	31.0 ± 2.7	42.0 ± 4.1

G. lancu et al. / Radiation Measurements 39 (2005) 525 - 533

466(22) mb @361 MeV/A

• Two approaches:

-
$$R_{H_2} = R_{CH_2} - \frac{I_{CH_2}}{I_{CT}} \frac{T_{CH_2}}{T_{CT}} \times R_{CT} - \left(1 - \frac{T_{CH_2}}{T_{CT}}\right) \frac{I_{CH_2}}{I_{ET}} \times R_{ET},$$

Valerii Panin, Fully Exclusive Measurements of Quasi-Free Single-Nucleon Knockout Reactions in Inverse Kinematics, 2012

- Subtract the reaction cross sections for C and CH2
- Both giving the same result
- Total reaction cross section on Hydrogen: 355 mb @405 MeV/A

Total and elementa	al fragmentation	cross-sections for	³⁶ Ar projectiles in mb
Etarget (A MeV)	361	361	359
Target	Н	С	Al
$\sigma_{ m tot}$	466.2 ± 21.9	1290.8 ± 16.1	1763.5 ± 26.9
$\sigma(Z_F = 17)$	86.7 ± 7.7	122.7 ± 4.7	154.9 ± 8.2
$\sigma(Z_F = 16)$	94.7 ± 8.2	124.3 ± 5.1	142.1 ± 7.6
$\sigma(Z_F = 15)$	51.3 ± 6.0	79.9 ± 3.6	93.7 ± 5.9
$\sigma(Z_F = 14)$	71.2 ± 7.2	91.3 ± 4.0	111.5 ± 6.9
$\sigma(Z_F = 13)$	27.5 ± 4.3	57.0 ± 3.1	78.5 ± 5.6
$\sigma(Z_F = 12)$	30.6 ± 4.8	71.9 ± 3.4	84.3 ± 5.7
$\sigma(Z_F = 11)$	13.6 ± 3.7	37.4 ± 2.7	48.1 ± 4.4
$\sigma(Z_F = 10)$	13.8 ± 3.5	48.3 ± 2.8	69.1 ± 4.9
$\sigma(Z_F = 9)$	5.5 ± 3.1	29.1 ± 2.4	38.1 ± 4.0
$\sigma(Z_F = 8)$	13.9 ± 3.7	53.4 ± 3.1	56.0 ± 4.4
$\sigma(Z_F = 7)$	8.5 ± 3.6	31.0 ± 2.7	42.0 ± 4.1

G. Iancu et al. / Radiation Measurements 39 (2005) 525 - 533

466(22) mb @361 MeV/A

Very simple approach

Summary up to this point

- The results pointing into the right direction
- Several corrections need to be applied
 - Full total reaction cross section formula
 - Account for losses of particles in the different targets
 - A propper cut on the unreacted particles

- ...

Summary up to this point

- The results pointing into the right direction
- Several corrections need to be applied
 - Full total reaction cross section formula
 - Account for losses of particles in the different targets
 - A propper cut on the unreacted particles

- ..

• Recevied already some feedback and paper (a lot) to read and improve the calculation

Summary

- Goal:
 - Check if the analysis code is working properly
 - Learn the details of the calculations
 - Check the data for consistency
 - Are the amount of gammas we see reasonable?

Next steps

- Check the total reaction cross section on Hydrogen again with improved calculations
- Do a proper uncertainty calculation
- One can calculate the total reaction cross section from Ar on Hydrogen
- Spectroscopic factors are available for ³⁵Cl from a pick up reaction ³⁶Ar(d,τ)³⁵Cl. Use this information to make an assumption of expected gammas

Enjoy a non political picture

Because sleep, friends, and money are overrated.

25.05.2023 | Christian Sürder | WG Kröll | TU Darmstadt | R3B Collaboration Meeting, Budapest | Slide 23