

LIGHT Collaboration Meeting 2023

Longitudinal Beam Profile Measurement Methods

UNIVERSITY OF APPLIED SCIENCES

Contributors: R. Singh, P. Forck, T. Reichert

Stephan Klaproth

Outline

- Pick-Ups
 - Default Design
 - General Working Principle
 - Use Cases
- GHz Transition Radiation Monitor
 - General Properties of Transition Radiation
 - Basic Principle
 - Measurement Results at GSI X2
- Fast Faraday Cups
 - Axial vs. Radial Coupled FFC

Pick-Ups

Pick-Ups - General Working Principle

Pick-Ups - General Working Principle

Pick-Ups - General Working Principle

$$I_{im}(t) \equiv \frac{dQ_{im}}{dt} = -\frac{A}{2\pi al} \cdot \frac{dQ_{beam}(t)}{dt}$$
$$= \frac{1}{\beta c} \cdot \frac{A}{2\pi a} \cdot i\omega I_{beam}$$

$$U_{im}(\omega) = R \cdot I_{im}(\omega) = Z_t(\omega, \beta) \cdot I_{beam}(\omega)$$

=
$$\frac{1}{\frac{\beta c}{C}} \frac{1}{2\pi a} \frac{A}{1 + i\omega RC} \frac{i\omega RC}{1 + i\omega RC} I_{beam}(\omega)$$

Transfer Impedance

Signal Generation in Phase Probes ($\beta < 1$)

Pick-Ups - Use Cases

- Pick-Ups can be used for many purposes
- For each purpose there are specialized designs
- Some use cases are:
 - Beam Position
 - Beam Velocity (ToF)
 - Bunch Arrival (BAM)
 - Bunch Shape
 - Total Charge

Pick-Ups - Use Cases: Beam Position

The image current density j_{im} at the wall is stronger, if the bunch is closer by. Depending on the distance bunch to pick-up plate the amplitude of U_{im} changes

Pick-Ups - Use Cases: Beam Velocity (ToF)

- RF-Frequency $f_{rf} \Leftrightarrow \text{Period } T$
- Known number of bunches in between N

•
$$\beta c = \frac{L}{NT + t_{scope}}$$

Example: ToF at proton LINACS:

- Estimated kinetic energy 1.4MeV/u
- $t_{scope} = 15.82(5)$ ns
- $f_{rf} = 36.136 \text{MHz} \Leftrightarrow T = 27.673 \text{ns}$
- L = 1.629(1)m
- *N* = 3
- $\Rightarrow \beta = 0.05497(7) \Leftrightarrow E_{kin} = 1.407(3)$ MeV/u

Pick-Ups - Use Cases: Bunch Arrival Monitor (BAM)

- Button pickups
 - Transient electric fields \rightarrow voltage signal
- (Main) laser oscillator
 - Pulsed laser reference

- Electro-optical modulator
 - Laser amplitude modulated according to voltage signal
- Data acquisition
 - Decoding the timing information

Pickup-Geometry [10]

By B. Scheible

Pick-Ups - Use Cases: Bunch Arrival Monitor (BAM)

by Löhl et al. [9]

Pick-Ups - Use Cases: Bunch Shape

- $\beta = 1$ Pick-Ups may be used for bunch shape measurements
- $\beta < 1$ E-field is significantly modeled smearing out the actual longitudinal shape
- Transversal E_{\perp} lab.-frame of a point charge $E_{\perp}(t) = \frac{e}{4\pi\varepsilon_0} \frac{\gamma R}{[R^2 + (\gamma\beta ct)^2]^{3/2}}$
- Longitudinal E_{\parallel} lab. frame of a point charge

$$E_{\parallel}(t) = -\frac{e}{4\pi\varepsilon_0} \frac{\gamma\beta ct}{[R^2 + (\gamma\beta ct)^2]^{3/2}}$$

For $\beta < 1 \rightarrow$ Field distribution is not the same as charge distribution. Effect visible for shorter bunches < few ns

Pick-Ups - Use Cases: Total Charge

- Total charge $Q_b = \int_V \rho dV = \frac{l}{\beta c} I_b(t)$
- Mirror current $I_e(t) = \frac{l}{\beta c} \frac{d}{dt} I_b(t) \equiv \frac{l}{\beta c} i\omega I_b(\omega)$ $I_e(\omega) = \underbrace{\frac{1+i\omega C_{pu}[Z_L+Z_{pu}]}{Z_l}}_{\text{transfer function}} U_a$
- The total charge can be calculated by measuring U_a $Q_b = \int_t I_b(t)dt$ $= \frac{\beta c}{l} \left(\frac{1}{Z_L} \int_t \int_\tau U_a(\tau) d\tau dt + C_{pu} \frac{Z_L + Z_{pu}}{Z_L} \int_t U_a(t) dt\right)$
- Two cases arise for the calculation of Q_b
 - Low impedance Z_L
 - High impedance Z_L

Pick-Ups - Use Cases: Total Charge

Low Impedance (50 Ω)

Simulations performed with CST with 1E6particles on simplified model

20

40

60

time (ns)

80

7.5 -

5.0

2.5

0.0

-2.5

-5.0

-7.5

0

voltage (mV)

$N_{sim} = 1E6$ $\sigma = [1ns, 10ns],$ $\Delta y = [0mm, 5mm, 10mm]$ $\beta = [0.01, 0.05, 0.2]$

Pick-Ups - Use Cases: Total Charge

- Raw calculated $Q_b = \frac{\beta c}{l_{pu}} \left(\frac{1}{Z_L} \int_t \int_\tau U_a(\tau) d\tau dt + C_{pu} \frac{Z_L + Z_{pu}}{Z_L} \int_t U_a(t) dt \right)$
- Strong dependency on PU length l_{pu} , very low dependency on velocity βc , bunch width σ and beam axis offset Δy

UNIVERSITY OF APPLIED SCIENCES

Pick-Ups - Use Cases: Total Charge

- Ignored fringe fields effects of the PU in the derivation. $\Rightarrow \text{An effective length should replace the PU length.}$ $Q_b = \frac{\beta c}{l_{eff}} \left(\frac{1}{Z_L} \int_t \int_\tau U_a(\tau) d\tau dt + C_{pu} \frac{Z_L + Z_{pu}}{Z_L} \int_t U_a(t) dt\right)$
- A simple model $l_{eff} = l_{pu} + \Delta l$ may be used to compensate the fringe field effects up to an error of $\pm 1.7\%$ for $\Delta l = 9.5$ mm
- Calibration is needed for absolute values, otherwise only relative charge measurement possible
- Alternative calibration: Test bench with known signal
- Applicable also on shoe-boxes and other types of capacitive PUs

Transition Radiation Monitors

Transition Radiation (TR)

A charge with velocity v = const. crossing an interface between two media radiates.

- an interface (z = 0) separating two half-spaces of different media
- solving MW-equations subject to interface conditions exhibit radiation field
- Surface electromagnetic phenomenon → prompt radiation
- In GHz regime, coherent transition radiation for ~ns bunches

A potential method un-affected by pre-field and secondary emission

Transition Radiation (TR) – Properties in the GHz Regime

GTR electric field for single charge:

$$\vec{E} = \frac{q\beta}{2\pi\varepsilon_0 cR} \frac{\sin\theta\delta\left(\frac{R}{c} - t\right)}{1 - \beta^2 \cos^2\theta} \left(\hat{e}_x \cos\theta + \hat{e}_z \sin\theta\right)$$

- Linear q and β dependence
- Parallel polarization for normal incidence
- Good signal: 10pC charges in 100 ps (σ) with β=0.15
 → 10 mV peak

Page

Transition Radiation (TR) – Properties in the GHz Regime

- Diffraction Radiation is very similar to TR but charge traverses close to the media interface
- Here: Instead of impacting on the target
 bunch can go through hole
- Allowable hole size: \emptyset for β
- For $\beta \sim 0.15$, $\emptyset \leq 6$ mm
- Non-destructive measurements possible!

Transition Radiation (TR) – Measurements at X2 (GSI)

- An RF window to couple out the TR signal \rightarrow Vacuum tolerance \rightarrow critical
- Absorbers to avoid reflections
- Linear phase antenna designs

Bi²⁶⁺ 11.4MeV/u, ~400 μ A, 100 μ s pulse length, 36MHz RF Antenna angle (θ) = 40 deg, Antenna distance to target (R) = 1.0 m

Transition Radiation (TR) – Measurements at X2 (GSI)

- Good correlation with the pick-up data
- Mean beam energy matches with ToF between pick-up and GTR

[2]

Bi²⁶⁺ 11.4MeV/u, ~400µA, 100µs pulse length, 36MHz RF Antenna angle (θ) = 40 deg, Antenna distance to target (R) = 1.0 m

UNIVERSITY OF APPLIED SCIENCES

[2]

Bi²⁶⁺ 11.4MeV/u, ~400 μ A, 100 μ s pulse length, 36MHz RF Antenna angle (θ) = 40 deg, Antenna distance to target (R) = 1.0 m

Transition Radiation (TR) – Measurements at X2 (GSI)

- Three consecutive macropulses show different charge distributions
- Longitudinal diagnostics need to be prepared for such fast changes

[6] R. Singh and T. Reichert, Phys. Rev. Accel. Beams 25, 032801

Fast Faraday Cups

Fast Faraday Cups (FFC)

- FFCs are design to measure fast longitudinal bunch structures
- Challenges:
 - Matching of the out-coupling should be done very well till high frequencies

i.e. $BW > 5\sigma_f = 5\frac{1}{2\pi\sigma_t}$

- Measuring the self-field should be avoided
- Suppress distortion of the signal caused by secondaries
- Cooling of the FFC / avoid melting of the FFC
- Despite being known for decades, FFCs are still under research in many shapes and use cases.

Axial, Radial, Strip-Line, ...

[7] J. M. Bogaty et al. (1990): A very wide bandwidth Faraday cup suitable for measuring GHz structure on ion beams with velocities to beta < 0.01

[2]

Port

- Simulation Settings:
 - $T_e = 10 eV$
 - 50 SE/Ion
 - No SE through electrons
 - SE emitted only from central conductor
- Suppression of SEE:
 - BIAS reattracts SE to central conductor
 - RCFFC recollects SE within drill hole. These SE will not contribute to signal.

[8]

[8]

ACFFC

Comparing Axially Coupled and Radially Coupled FFC

Comparing Phase Probe and Radially Coupled FFC

UNIVERSITY OF APPLIED SCIENCES

Conclusions

- Fast and robust longitudinal diagnostics is important for various alignments.
- Pick-Up field distribution is not equal to the charge distribution for $\beta < 1$
- Total charge measurements are possible and insensitive to other beam parameters
- Combined purpose possible: e.g., TOF, BAM, Total Charge with just two Pick-Ups
- GTR a promising **non-invasive option for high currents** *but* not a compact installation. Further investigation under BMBF project ongoing
- FFC is a promising compact option but requires careful placement and biasing is essential depending on the energy regimes. New designs being tested, comparison with calculated phase space needed

[2]

Room for Questions!

Acknowledgements

Machine operating team!

BI Deptt.: C. Dorn , S. Fielder, C. Krueger, T. Luckhardt, W. Maier, T. Milosic, M. Mueller, A. Reiter, T. Sieber, B. Walasek-Hoehne **LINAC Deptt.:** W. Barth, M. Miski-Oglu, S. Lauber, U Scheeler, H. Vormann, M. Vossberg, S. Yaramyshev

IUAC: K. Mal, G. Rodrigues, S. Kumar, FNAL: V. Scarpine, A. Shemyakin, D. Sun

B. Scheible, A. Penirschke, H. De Gersem

This work is supported by the German Federal Ministry of Education and Research (BMBF) under contract no. 05P21RORB2. Joint Project 05P2021 - R&D Accelerator (DIAGNOSE)

UNIVERSITY OF APPLIED SCIENCES

Bundesministerium

für Bildung und Forschung

References

- [1] P. Forck, JUAS Lecture notes on beam instrumentation, 2022
- [2] R. Singh, "Longitudinal Beam Diagnostics R&D at GSI-UNILAC", in *Proc. HIAT*'22, Darmstadt, Germany, Jun.-Jul. 2022, pp. 144-149. doi:10.18429/JACoW-HIAT2022-TH2I2
- [3] P. Forck, JUAS Lecture notes on beam instrumentation, 2021
- [4] A. G. Shkvarunets and R. B. Fiorito, Phys. Rev. ST Accel. Beams 11, 012801
- [5] R. Singh and T. Reichert, Phys. Rev. Accel. Beams 25, 032801
- [6] R. Singh and T. Reichert, "Longitudinal charge distribution measurement of nonrelativistic ion beams using coherent transition radiation", Phys. Rev. Accel. Beams, vol. 25, no. 3, p. 032801, 2022, doi:10.1103/PhysRevAccelBeams.25. 032801
- [7] J. M. Bogaty et al.: A very wide bandwidth Faraday cup suitable for measuring GHz structure on ion beams with velocities to beta < 0.01, Proc. of Linear Accelerator Conference 1990, Albuquerque, New Mexico, USA
- [8] R. Singh, S. Klaproth et. Al., SIMULATION AND MEASUREMENTS OF THE FAST FARADAY CUPS AT GSI UNILAC, IBIC22 Conference Proceedings, Poland, Krakau, 2022
- [9] F. Löhl et al., "Electron bunch timing with femtosecond precision in a superconducting free-electron laser", Phys. Rev. Lett., Vol. 104, No. 14, 2010
- [10] A. Angelovski et al., "High bandwidth pickup design for bunch arrival-time monitors for free-electron laser", Phys. Rev. ST Accel. Beams 15, 112803 (2012). Doi: 10.1103/PhysRevSTAB.15.112803
- [11] J.-P. Carniero et al., "Longitudinal beam dynamics studies at the PIP-II injector test facility", International Journal of Modern Physics A, vol. 34, no. 36, 2019. doi:10.1142/S0217751X19420132
- [12] W. R. Rawnsley et al., "Bunch shape measurements using fast Faraday cups and an oscilloscope operated by LabVIEW over Ethernet", AIP Conference Proceedings, vol. 546, p. 547,2000. doi:10.1063/1.1342629