

LIGHT Collaboration Meeting 2023

Longitudinal Beam Profile Measurement Methods

TECHNISCHE

UNIVERSITÄT

DARMSTADT

UNIVERSITY OF APPLIED SCIENCES

Contributors: R. Singh, P. Forck, T. Reichert

Stephan Klaproth

Outline

- Pick-Ups
	- Default Design
	- General Working Principle
	- Use Cases
- GHz Transition Radiation Monitor
	- General Properties of Transition Radiation
	- Basic Principle
	- Measurement Results at GSI X2
- Fast Faraday Cups
	- Axial vs. Radial Coupled FFC

Pick-Ups

Pick-Ups - General Working Principle

Pick-Ups - General Working Principle

Pick-Ups - General Working Principle

$$
I_{im}(t) \equiv \frac{dQ_{im}}{dt} = -\frac{A}{2\pi a l} \cdot \frac{dQ_{beam}(t)}{dt}
$$

$$
= \frac{1}{\beta c} \cdot \frac{A}{2\pi a} \cdot i\omega I_{beam}
$$

$$
U_{im}(\omega) = R \cdot I_{im}(\omega) = Z_t(\omega, \beta) \cdot I_{beam}(\omega)
$$

=
$$
\frac{1}{\beta c} \frac{1}{C} \frac{1}{2\pi a} \frac{i\omega RC}{1 + i\omega RC} I_{beam}(\omega)
$$

Transfer Impedance

Signal Generation in Phase Probes (β < 1)

Pick-Ups - General Working Principle

The image current at the wall is monitored on a high frequency basis i.e. ac-part given

)

Pick-Ups - Use Cases

- Pick-Ups can be used for many purposes
- For each purpose there are specialized designs
- Some use cases are:
	- Beam Position
	- Beam Velocity (ToF)
	- Bunch Arrival (BAM)
	- Bunch Shape
	- Total Charge

<u>ี่</u>

- \bullet

)

)

-

<u>ר</u>

 \bullet

 \bullet

e \blacktriangleright $\mathsf{P}_{\mathsf{Q}}\mathsf{G}$

Pick-Ups - Use Cases: Beam Position

The image current density j_{im} at the wall is stronger, if the bunch is closer by. Depending on the distance bunch to pick-up plate the amplitude of U_{im} changes

 $\frac{1}{9}$ $\frac{1}{9}$ $\frac{1}{9}$ $\frac{1}{9}$ $\frac{1}{9}$ $\frac{1}{9}$ $\frac{1}{9}$ $\frac{1}{9}$ $\frac{1}{9}$

 \blacklozenge

 $\frac{1}{2}$ $\frac{1}{2$

a

e

DO

D

 \rightarrow \rightarrow \rightarrow \rightarrow

 $- 1 - 1$

of coo coc

-

-

 \bullet

-

de C

 \rightarrow \rightarrow

 $- 0$ $- 0$ $- 0$ $- 0$

 \bullet \bullet

 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

)

)

 $-$

e

)

Pick-Ups - Use Cases: Beam Velocity (ToF)

- RF-Frequency $f_{rf} \Leftrightarrow$ Period T
- Known number of bunches in between N

•
$$
\beta c = \frac{L}{NT + t_{scope}}
$$

Example: ToF at proton LINACS:

- Estimated kinetic energy 1.4MeV/u
- $t_{scope} = 15.82(5)$ ns
- $f_{rf} = 36.136$ MHz $\Leftrightarrow T = 27.673$ ns
- $L = 1.629(1)$ m
- $N=3$
- $\Rightarrow \beta = 0.05497(7) \Leftrightarrow E_{kin} = 1.407(3)$ MeV/u

Pick-Ups - Use Cases: Bunch Arrival Monitor (BAM)

- **Button pickups**
	- **Transient electric fields** \rightarrow **voltage signal**
- **■** (Main) laser oscillator
	- **•** Pulsed laser reference

- **Electro-optical modulator**
	- Laser amplitude modulated according to voltage signal
- Data acquisition
	- Decoding the timing information

Pickup-Geometry [10]

By B. Scheible

Pick-Ups - Use Cases: Bunch Arrival Monitor (BAM)

by Löhl et al. [9]

Pick-Ups - Use Cases: Bunch Shape

- $\beta = 1$ Pick-Ups may be used for bunch shape measurements
- β < 1 E-field is significantly modeled smearing out the actual longitudinal shape
- Transversal E_⊥ lab.-frame of a point charge $E_{\perp}(t) = \frac{e}{4\pi i}$ $4\pi\varepsilon_0$ γR $R^2 + (\gamma \beta c t)^2]^{3/2}$
- Longitudinal E_{\parallel} lab. frame of a point charge

$$
E_{\parallel}(t) = -\frac{e}{4\pi\varepsilon_0} \frac{\gamma \beta ct}{[R^2 + (\gamma \beta ct)^2]^{3/2}}
$$

For *β* < 1 → Field distribution is not the same as charge distribution. Effect visible for shorter bunches < few ns

Pick-Ups - Use Cases: Total Charge

- Total charge $Q_b = \int_V \rho dV = \frac{l}{\beta c} I_b(t)$
- Mirror current $I_e(t) = \frac{l}{\beta}$ βc \overline{d} $\frac{d}{dt}I_b(t) \equiv \frac{l}{\beta c} i\omega I_b(\omega)$ $I_e(\omega) =$ $1+i\omega C_{pu} [Z_L+Z_{pu}]$ Z_l transfer function U_a
- The total charge can be calculated by measuring U_a $Q_b = \int_t I_b(t) dt$ $=\frac{\beta c}{l}$ $\mathfrak l$ 1 $\frac{1}{Z_L}\int_t\int_{\tau}U_a(\tau)d\tau dt+C_{pu}$ $Z_L + Z_{pu}$ $\frac{L_{p}u}{Z_{L}}\int_{t}U_{a}(t)dt$
- Two cases arise for the calculation of Q_h
	- Low impedance Z_L
	- High impedance Z_L

Pick-Ups - Use Cases: Total Charge

Simulations performed with CST with $1E6$ particles on simplified model

 σ 1ns, $\Delta y = 0$ mm, β 0.01

20

40

60

time (ns)

80

 $7.5 -$

 5.0

2.5

 0.0

 -2.5

 -5.0

 -7.5

 $\overline{0}$

 $\text{voltage}\ (\text{mV})$

$N_{\text{sim}} = 1E6$ $\sigma = [1ns, 10ns]$, $\Delta y =$ [0mm, 5mm, 10mm] $\beta = [0.01, 0.05, 0.2]$

Pick-Ups - Use Cases: Total Charge

- Raw calculated $Q_b = \frac{\beta c}{l_{\text{max}}}$ l_{pu} 1 $\frac{1}{Z_L}\int_t\int_{\tau}U_a(\tau)d\tau dt+C_{pu}$ $Z_L + Z_{pu}$ $\frac{L_{p}u}{Z_{L}}\int_{t}U_{a}(t)dt$
- Strong dependency on PU length l_{pu} , very low dependency on velocity βc , bunch width $σ$ and beam axis offset $Δy$

UNIVERSITY OF APPLIED SCIENCES

Pick-Ups - Use Cases: Total Charge

- Ignored fringe fields effects of the PU in the derivation. ⇒ An effective length should replace the PU length. $Q_b = \frac{\beta c}{l}$ l_{eff} 1 $\frac{1}{Z_L}\int_t\int_{\tau}U_a(\tau)d\tau dt+C_{pu}$ $Z_L + Z_{pu}$ $\frac{L_{p}u}{Z_{L}}\int_{t}U_{a}(t)dt$
- A simple model $l_{eff} = l_{pu} + \Delta l$ may be used to compensate the fringe field effects up to an error of $+1.7\%$ for $\Delta l = 9.5$ mm
- Calibration is needed for absolute values, otherwise only relative charge measurement possible
- Alternative calibration: Test bench with known signal
- Applicable also on shoe-boxes and other types of capacitive PUs

 $N_{\text{sim}} = 1E6$ $\sigma =$ [1ns, 10ns], $\Delta y =$ [0mm, 5mm, 10mm] $\beta = [0.01, 0.05, 0.2]$

Transition Radiation Monitors

Transition Radiation (TR)

A charge with velocity $v = const.$ crossing an interface between two media radiates.

- an interface $(z = 0)$ separating two half-spaces of different media
- solving MW-equations subject to interface conditions exhibit radiation field
- Surface electromagnetic phenomenon \rightarrow prompt radiation
- In GHz regime, **coherent** transition radiation for ~ns bunches

A potential method un-affected by pre-field and secondary emission

Transition Radiation (TR) – Properties in the GHz Regime

GTR electric field for single charge:

$$
\vec{E} = \frac{q\beta}{2\pi\varepsilon_0 cR} \frac{\sin\theta \delta(\frac{R}{c} - t)}{1 - \beta^2 \cos^2\theta} (\hat{e}_x \cos\theta + \hat{e}_z \sin\theta)
$$

- Linear q and β dependence
- Parallel polarization for normal incidence
- Good signal: 10pC charges in 100 ps (σ) with $\beta = 0.15$ \rightarrow 10 mV peak

[2]

Transition Radiation (TR) – Properties in the GHz Regime

- Diffraction Radiation is very similar to TR but charge traverses close to the media interface
- Here: Instead of impacting on the target bunch can go through hole
- Allowable hole size: \emptyset for β
- For $\beta \sim 0.15$, $\emptyset \leq 6$ mm
- **Non-destructive measurements possible!**

Transition Radiation (TR) – Measurements at X2 (GSI)

- An RF window to couple out the TR signal \rightarrow Vacuum tolerance \rightarrow critical
- Absorbers to avoid reflections
- Linear phase antenna designs

Bi26+ 11.4MeV/u, ~400µA, 100µs pulse length, 36MHz RF Antenna angle (θ) = 40 deg, Antenna distance to target (R) = 1.0 m

Transition Radiation (TR) – Measurements at X2 (GSI)

• Mean beam energy matches with ToF between pick-up and GTR

[2]

Bi26+ 11.4MeV/u, ~400µA, 100µs pulse length, 36MHz RF Antenna angle (θ) = 40 deg, Antenna distance to target (R) = 1.0 m

UNIVERSITY OF APPLIED SCIENCES

[2]

Bi26+ 11.4MeV/u, ~400µA, 100µs pulse length, 36MHz RF Antenna angle (θ) = 40 deg, Antenna distance to target (R) = 1.0 m

Transition Radiation (TR) – Measurements at X2 (GSI)

- Three consecutive macropulses show different charge distributions
- Longitudinal diagnostics need to be prepared for such fast changes

[6] R. Singh and T. Reichert, Phys. Rev. Accel. Beams 25, 032801

Fast Faraday Cups

Fast Faraday Cups (FFC)

- FFCs are design to measure fast longitudinal bunch structures
- Challenges:
	- Matching of the out-coupling should be done very well till high frequencies

i.e. *BW* > 5 $\sigma_f = 5 \frac{1}{2\pi}$ $2\pi\sigma_t$

- Measuring the self-field should be avoided
- Suppress distortion of the signal caused by secondaries
- Cooling of the FFC / avoid melting of the FFC
- Despite being known for decades, FFCs are still under research in many shapes and use cases.

Axial, Radial, Strip-Line, ...

[7] J. M. Bogaty et al. (1990): A very wide bandwidth Faraday cup suitable for measuring GHz structure on ion beams with velocities to beta < 0.01 [2]

[8,11,12]

ort

- Simulation Settings:
	- $T_e = 10eV$
	- 50 SE/Ion
	- No SE through electrons
	- SE emitted only from central conductor
- Suppression of SEE:
	- BIAS reattracts SE to central conductor
	- RCFFC recollects SE within drill hole. These SE will not contribute to signal.

[8]

[8]

Comparing Axially Coupled and Radially Coupled FFC

Comparing Phase Probe and Radially Coupled FFC

UNIVERSITY OF APPLIED SCIENCES

Conclusions

- Fast and robust longitudinal diagnostics is important for various alignments.
- Pick-Up field distribution is not equal to the charge distribution for $\beta < 1$
- Total charge measurements are possible and insensitive to other beam parameters
- Combined purpose possible: e.g., TOF, BAM, Total Charge with just two Pick-Ups
- GTR a promising **non-invasive option for high currents** *but* not a compact installation. Further investigation under BMBF project ongoing
- FFC is a promising **compact option** *but* requires careful placement and biasing is essential depending on the energy regimes. New designs being tested, comparison with calculated phase space needed

[2]

Room for Questions!

Acknowledgements

Machine operating team!

BI Deptt.: C. Dorn , S. Fielder, C. Krueger, T. Luckhardt, W. Maier, T. Milosic, M. Mueller, A. Reiter, T. Sieber, B. Walasek-Hoehne **LINAC Deptt.:** W. Barth, M. Miski-Oglu, S. Lauber, U Scheeler, H. Vormann, M. Vossberg, S. Yaramyshev

IUAC: K. Mal, G. Rodrigues, S. Kumar , **FNAL:** V. Scarpine, A. Shemyakin,D. Sun

B. Scheible, A. Penirschke, H. De Gersem

This work is supported by the German Federal Ministry of Education and Research (BMBF) under contract no. 05P21RORB2. Joint Project 05P2021 - R&D Accelerator (DIAGNOSE)

UNIVERSITY OF APPLIED SCIENCES

References

- [1] P. Forck, JUAS Lecture notes on beam instrumentation, 2022
- [2] R. Singh, "Longitudinal Beam Diagnostics R&D at GSI-UNILAC", in *Proc. HIAT'22*, Darmstadt, Germany, Jun.-Jul. 2022, pp. 144-149. doi:10.18429/JACoW-HIAT2022-TH2I2
- [3] P. Forck, JUAS Lecture notes on beam instrumentation, 2021
- [4] A. G. Shkvarunets and R. B. Fiorito, Phys. Rev. ST Accel. Beams 11, 012801
- [5] R. Singh and T. Reichert, Phys. Rev. Accel. Beams 25, 032801
- [6] R. Singh and T. Reichert, "Longitudinal charge distribution measurement of nonrelativistic ion beams using coherent transition radiation", Phys. Rev. Accel. Beams, vol. 25, no. 3, p. 032801, 2022, doi:10.1103/PhysRevAccelBeams.25. 032801
- [7] J. M. Bogaty et al.: A very wide bandwidth Faraday cup suitable for measuring GHz structure on ion beams with velocities to beta < 0.01, Proc. of Linear Accelerator Conference 1990, Albuquerque, New Mexico, USA
- [8] R. Singh, S. Klaproth et. Al., SIMULATION AND MEASUREMENTS OF THE FAST FARADAY CUPS AT GSI UNILAC, IBIC22 Conference Proceedings, Poland, Krakau, 2022
- [9] F. Löhl et al., "Electron bunch timing with femtosecond precision in a superconducting free-electron laser", Phys. Rev. Lett., Vol. 104, No. 14, 2010
- [10] A. Angelovski et al., "High bandwidth pickup design for bunch arrival-time monitors for free-electron laser", Phys. Rev. ST Accel. Beams 15, 112803 (2012). Doi: 10.1103/PhysRevSTAB.15.112803
- [11] J.-P. Carniero et al., "Longitudinal beam dynamics studies at the PIP-II injector test facility", International Journal of Modern Physics A, vol. 34, no. 36, 2019. doi:10.1142/S0217751X19420132
- [12] W. R. Rawnsley et al., "Bunch shape measurements using fast Faraday cups and an oscilloscope operated by LabVIEW over Ethernet", AIP Conference Proceedings, vol. 546, p. 547,2000. doi:10.1063/1.1342629