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Pick-Ups
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Pick-Ups - General Working Principle
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Pick-Ups - General Working Principle
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Pick-Ups - General Working Principle
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Pick-Ups - General Working Principle
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Signal Generation in Phase Probes (β < 1) 

Adaptation of Animation by Rhodri Jones (CERN)

The image current at the wall is monitored 

on a high frequency basis i.e. ac-part given 

by the bunched beam.
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Pick-Ups - Use Cases

• Pick-Ups can be used for many purposes

• For each purpose there are specialized designs

• Some use cases are:

• Beam Position 

• Beam Velocity (ToF)

• Bunch Arrival (BAM)

• Bunch Shape

• Total Charge
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Pick-Ups - Use Cases: Beam Position
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Animation by Rhodri Jones (CERN)

Δ
𝑥

The image current density 𝑗𝑖𝑚 at the wall is 
stronger, if the bunch is closer by. Depending on 
the distance bunch to pick-up plate the amplitude 
of 𝑈𝑖𝑚 changes 
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Pick-Ups - Use Cases: Beam Velocity (ToF)

• RF-Frequency 𝑓𝑟𝑓 ⇔ Period 𝑇

• Known number of bunches in between N

• 𝛽𝑐 =
𝐿

𝑁𝑇+𝑡𝑠𝑐𝑜𝑝𝑒

Example: ToF at proton LINACS:

• Estimated kinetic energy 1.4MeV/u
• 𝑡𝑠𝑐𝑜𝑝𝑒 = 15.82(5)ns

• 𝑓𝑟𝑓 = 36.136MHz ⇔𝑇 = 27.673ns

• 𝐿 = 1.629(1)m
• 𝑁 = 3
⇒ 𝛽 = 0.05497(7)⇔ 𝐸𝑘𝑖𝑛 = 1.407(3)MeV/u

[1]
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Pick-Ups - Use Cases: Bunch Arrival Monitor (BAM)

▪ Button pickups
▪ Transient electric fields → voltage signal

▪ (Main) laser oscillator
▪ Pulsed laser reference

Beamline

e-

EOM
Laser Reference

DAQ

Pickup

▪ Electro-optical modulator
▪ Laser amplitude modulated according to voltage signal

▪ Data acquisition
▪ Decoding the timing information

By B. Scheible
Pickup-Geometry [10] 
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Pick-Ups - Use Cases: Bunch Arrival Monitor (BAM)

by Löhl et al. [9]
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Pick-Ups - Use Cases: Bunch Shape

• 𝜷 = 𝟏 Pick-Ups may be used for bunch shape measurements

• 𝜷 < 𝟏 E-field is significantly modeled smearing out the actual longitudinal shape

• Transversal E⊥ lab.-frame of a point charge

𝐸⊥ 𝑡 =
𝑒

4𝜋𝜀0

𝛾𝑅

𝑅2+ 𝛾𝛽𝑐𝑡 2 Τ3 2

• Longitudinal 𝐸∥ lab. frame of a point charge

𝐸∥ 𝑡 = −
𝑒

4𝜋𝜀0

𝛾𝛽𝑐𝑡

𝑅2+ 𝛾𝛽𝑐𝑡 2 Τ3 2

R

  R / 

𝐸
⊥

For β < 1 → Field distribution is not the same as charge 

distribution. Effect visible for shorter bunches < few ns

Charge Dist.
𝛽 = 0.05
𝛽 = 0.15

𝑅 = 3 𝑐𝑚
𝜎 = 0.5 𝑛𝑠

[1]

[2]
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Pick-Ups - Use Cases: Total Charge

• Total charge 𝑄𝑏 = 𝑉׬ 𝜌𝑑𝑉 =
𝑙

𝛽𝑐
𝐼𝑏(𝑡)

• Mirror current 𝐼𝑒 𝑡 =
𝑙

𝛽𝑐

𝑑

𝑑𝑡
𝐼𝑏 𝑡 ≡

𝑙

𝛽𝑐
𝑖𝜔 𝐼𝑏(𝜔)

𝐼𝑒 𝜔 =
1+𝑖𝜔𝐶𝑝𝑢 𝑍𝐿+𝑍𝑝𝑢

𝑍𝑙

transfer function

𝑈𝑎

• The total charge can be calculated by measuring 𝑈𝑎
𝑄𝑏 = 𝑡׬ 𝐼𝑏 𝑡 𝑑𝑡

=
𝛽𝑐

𝑙

1

𝑍𝐿
𝑡׬ 𝜏𝑈𝑎׬ 𝜏 𝑑𝜏𝑑𝑡 + 𝐶𝑝𝑢

𝑍𝐿+𝑍𝑝𝑢

𝑍𝐿
𝑡𝑈𝑎׬ 𝑡 𝑑𝑡

• Two cases arise for the calculation of 𝑄𝑏
• Low impedance 𝑍𝐿
• High impedance 𝑍𝐿
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Pick-Ups - Use Cases: Total Charge

Low Impedance (50Ω) High Impedance (1MΩ)

 aveg ide  ort

 aveg ide

 ic    

  ield

Simulations performed with CST with 1𝐸6
particles on simplified model

𝜎 1ns, Δ𝑦 = 0mm, 𝛽 0.01

[3]
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Pick-Ups - Use Cases: Total Charge

• Raw calculated 𝑄𝑏 =
𝛽𝑐

𝑙𝑝𝑢

1

𝑍𝐿
𝑡׬ 𝜏𝑈𝑎׬ 𝜏 𝑑𝜏𝑑𝑡 + 𝐶𝑝𝑢

𝑍𝐿+𝑍𝑝𝑢

𝑍𝐿
𝑡𝑈𝑎׬ 𝑡 𝑑𝑡

• Strong dependency on PU length 𝑙𝑝𝑢, very low dependency on velocity 𝛽𝑐,

bunch width σ and beam axis offset Δ𝑦

Low Impedance (50Ω) High Impedance (1MΩ)

𝑁𝑠𝑖𝑚 = 1𝐸6
𝜎 = [1ns, 10ns], 
Δ𝑦 = [0mm, 5mm, 10mm]
𝛽 = [0.01, 0.05, 0.2]
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Pick-Ups - Use Cases: Total Charge

• Ignored fringe fields effects of the PU in the derivation.

⇒ An effective length should replace the PU length.

𝑄𝑏 =
𝛽𝑐

𝑙𝑒𝑓𝑓

1

𝑍𝐿
𝑡׬ 𝜏𝑈𝑎׬ 𝜏 𝑑𝜏𝑑𝑡 + 𝐶𝑝𝑢

𝑍𝐿+𝑍𝑝𝑢

𝑍𝐿
𝑡𝑈𝑎׬ 𝑡 𝑑𝑡

• A simple model 𝑙𝑒𝑓𝑓 = 𝑙𝑝𝑢 + Δ𝑙 may be used to

compensate the fringe field effects up to an error

of ±1.7% for Δ𝑙 = 9.5mm

• Calibration is needed for absolute values,

otherwise only relative charge 

measurement possible

• Alternative calibration: Test bench with known signal

• Applicable also on shoe-boxes and other types of capacitive PUs

𝑁𝑠𝑖𝑚 = 1𝐸6
𝜎 = [1ns, 10ns], 
Δ𝑦 = [0mm, 5mm, 10mm]
𝛽 = [0.01, 0.05, 0.2]

Low Impedance (50Ω)
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Transition Radiation Monitors
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Transition Radiation (TR)

A charge with velocity 𝑣 = 𝑐𝑜𝑛𝑠𝑡. crossing an interface 

between two media radiates. 

• an interface (𝑧 = 0) separating two half-spaces of

different media

• solving MW-equations subject to interface conditions

exhibit radiation field

• Surface electromagnetic phenomenon → prompt 

radiation

• In GHz regime, coherent transition radiation for ~ns

bunches

A potential method un-affected by pre-field and 

secondary emission

[2]
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Transition Radiation (TR) – Properties in the GHz Regime

GTR electric field for single charge:

𝐸 =
𝑞𝛽

2𝜋𝜀0𝑐𝑅

sin 𝜃δ
𝑅

𝑐
−𝑡

1 −𝛽2 cos2 𝜃
( Ƹ𝑒𝑥cos 𝜃 + Ƹ𝑒𝑧 sin 𝜃)

• Linear q and 𝛽 dependence

• Parallel polarization for normal incidence

• Good signal: 10pC charges in 100 ps (σ) with β=0.15 

→ 10 mV peak

Target

[2]
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Transition Radiation (TR) – Properties in the GHz Regime

• Diffraction Radiation is very similar to TR but 

charge traverses close to the media interface

• Here: Instead of impacting on the target

bunch can go through hole 

• Allowable hole size: Ø for  𝛽

• For 𝛽 ~ 0.15 , Ø ≤ 6mm

• Non-destructive measurements possible!

[2]
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Transition Radiation Monitors Basic Concept
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Transition Radiation Monitors Basic Concept
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Transition Radiation Monitors Basic Concept
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Transition Radiation (TR) – Measurements at X2 (GSI) 
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• An RF window to couple out the TR signal → Vacuum tolerance → critical

• Absorbers to avoid reflections

• Linear phase antenna designs
[2]
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Transition Radiation (TR) – Measurements at X2 (GSI) 

Bi26+ 11.4MeV/u, ~400µA, 

100µs pulse length, 36MHz RF

Antenna angle (θ) =  40 deg,

Antenna distance to target (R) = 1.0 m

• Good correlation with the pick-up data

• Mean beam energy matches with ToF between pick-up and GTR

GTR

Phase Probe

[2]
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Transition Radiation (TR) – Measurements at X2 (GSI) 

Convolved GTR has precise agreement with phase probe signal!

GTR

Phase Probe

Bi26+ 11.4MeV/u, ~400µA, 

100µs pulse length, 36MHz RF

Antenna angle (θ) =  40 deg,

Antenna distance to target (R) = 1.0 m

[2]
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Transition Radiation (TR) – Measurements at X2 (GSI) 

[6] R. Singh and T. Reichert,

Phys. Rev. Accel. Beams 25, 032801

• Three consecutive macropulses show different charge distributions

• Longitudinal diagnostics need to be prepared for such fast changes

Phase Probe

GTR

Bi26+ 11.4MeV/u, ~400µA, 

100µs pulse length, 36MHz RF

Antenna angle (θ) =  40 deg,

Antenna distance to target (R) = 1.0 m
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Fast Faraday Cups
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Fast Faraday Cups (FFC)

• FFCs are design to measure fast longitudinal bunch structures

• Challenges:

• Matching of the out-coupling should be done very well till high frequencies

i.e. 𝐵𝑊 > 5𝜎𝑓 = 5
1

2𝜋𝜎𝑡

• Measuring the self-field should be avoided

• Suppress distortion of the signal caused by secondaries

• Cooling of the FFC / avoid melting of the FFC

• Despite being known for decades, FFCs are still under research in many shapes and use cases.

Axial, Radial, Strip- ine, …

[7] J. M. Bogaty et al. (1990): A very wide bandwidth Faraday cup suitable

for measuring GHz structure on ion beams with velocities to beta < 0.01 [2]
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Fast Faraday Cups (FFC) – Comparing Axially Coupled and Radially Coupled FFC
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[8,11,12]



Stephan Klaproth Page 33

Fast Faraday Cups (FFC) – Comparing Axially Coupled and Radially Coupled FFC

BIAS
▪ Simulation Settings:

▪ 𝑇𝑒 = 10𝑒𝑉
▪ 50 SE/Ion
▪ No SE through electrons
▪ SE emitted only from

central conductor
▪ Suppression of SEE:

▪ BIAS reattracts SE to
central conductor

▪ RCFFC recollects SE 
within drill hole. These 
SE will not contribute to
signal.
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Fast Faraday Cups (FFC) – Comparing Axially Coupled and Radially Coupled FFC

   

       

      

            

             

    

               

            

   

       

      

            

             

    

               

            

[8]
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Fast Faraday Cups (FFC) – Comparing Axially Coupled and Radially Coupled FFC
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ACFFC RCFFC

[8]
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Fast Faraday Cups (FFC) – Comparing Axially Coupled and Radially Coupled FFC

Secondary
Electrons

E-Field of
biased collector

BeamSecondary
Electrons
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Comparing Axially Coupled and Radially Coupled FFC
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ACFFC RCFFC

𝑂6+

8.6 MeV/u
0.4 mA

𝐴𝑟10+

8.6 MeV/u
0.4 mA [8]
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Comparing Phase Probe and Radially Coupled FFC

38

RCFFC Phase probe low velocity beam 
response (𝛽 = 0.134 ) at R = 3 cm

O6+ , 0.5 mA, 8.6 MeV/u

Phase probe remains a validation device!

PP

[2]
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Conclusions

• Fast and robust longitudinal diagnostics is important for various alignments.

• Pick-Up field distribution is not equal to the charge distribution for 𝛽 < 1

• Total charge measurements are possible and insensitive to other beam parameters

• Combined purpose possible: e.g., TOF, BAM, Total Charge with just two Pick-Ups

• GTR a promising non-invasive option for high currents but not a compact installation. 

Further investigation under BMBF project ongoing

• FFC is a promising compact option but requires careful placement and biasing is essential 

depending on the energy regimes. New designs being tested, comparison with calculated phase 

space needed

[2]
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Room for Questions!
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