

Energy Calibration of the PANDA Electromagnetic Calorimeter

Hang Qi

IHEP&USTC group

March, 2023

PANDA Collaboration Meeting 23-1 at Bochum University

Outline

- PANDA EMC-Barrel
- Energy Calibration
- Energy Leakage Correction
- Calibration with Leakage Correction
- Summary

PANDA EMC-Barrel

- Energy measurement
- Position measurement
- Shower shape measurement
- Separation of γ/e and hadrons

PWO-II crystal:

- Width ~ 2-3 cm (R_M ~ 2 cm)
- Length ~ 20 cm (X_0 ~ 1 cm)

Energy Calibration $(\pi^0 \rightarrow \gamma \gamma)$

- Detection unit uniformity
- Pre-shower and Leakage
- Light yield non-uniformity

The calibration will improve the energy resolution and correct the reconstructed energy to the true energy which can be used in physics analysis.

Energy Calibration ($\pi^0 \rightarrow \gamma \gamma$)

Monte Carlo simulated sample of $\pi^0 \rightarrow \gamma \gamma$

https://indico.gsi.de/event/1226/contributions/2378/attachments/1960/2472/Steinke EmcCalibration.pdf

Energy Calibration $(\pi^0 \rightarrow \gamma \gamma)$

- The calibration algorithm can be applied to those crystals in the inner region of the calorimeter, and perfectly satisfy the requirement of PANDA experiment
- However, the calibration algorithm will suffer the energy leakage problem when applied to crystals in the edge region
- The energy leakage problem must be solved before doing calibration

- Influences of energy leakage :
 - Shower lost → energy shift
 - Statistics lost → bad resolution
 - •
- Solutions:
 - MPV shift
 - Estimate the leakages based on some features of the shower lateral development, such as the shape of the shower...

Monte Carlo simulated sample of single y

• When a coming particle hit the edge of the EMC, the energy deposited in the outer side will not be detected.

The energy deposited in the outer side (E_{Outer}) is missed for edge condition, but the ratio E_{Outer}/E_{Seed} can be obtained according to E_{Inner}/E_{Seed}

Hang Qi (USTC)

Hang Qi (USTC)

Calibration with Leakage Correction

Calibration with Leakage Correction

Hang Qi (USTC)

Calibration with Leakage Correction

Hang Qi (USTC)

- The calibration algorithm has been tested with single γ/π^0 particle from particle gun.
- Calibration with real physics events is the final goal.
- Process like $p\overline{p} \rightarrow \pi^0 \pi^0 \pi^0$ is an ideal control sample.

- γ : the cluster match with the γ from π^0 decay
- *e*: the cluster match with the e^{\pm} from γ_{π^0}
- Match with further secondary particles are not considered here
- The peaking BKG and the higher tail in low mass side comes from the "leakage" events

Match range

Hang Qi (USTC)

Energy Calibration ($p\overline{p} \rightarrow \pi^0 \pi^0 \pi^0)$

- m = 0.13222, σ = 0.010 (raw) - E = 0.98113, σ = 0.085 (raw) - m = 0.13409, σ = 0.007 (cor) - E = 0.99611, σ = 0.043 (cor)

Summary

- A dedicated calibration algorithm is developed for the PANDA EMC
- The correction of energy leakage is included in the calibration
- The calibration method is tested with γ/π^0 from single particle events and π^0 from physics events. Better accuracy and precision can be achieved (merge?).

Thank you for your attention!