Hyperon Reconstruction in pp HADES Data at 4.5 GeV Beam Kinetic Energy and Perspectives for 30 GeV

Jenny Regina

GSI Helmholtzzentrum für Schwerionenforschung GmbH

March 8, 2023

Hyperons at HADES

Purpose of this presentation and Outline

- Follow up on HADES overview talk on Monday
 - Many interesting hyperon channels and results shown
- To give a hint of data analysis at HADES
- Connect to PANDA physics program
- Why extend studies to higher energies?

Outline

- Why are Ξ[−] interesting to study?
- Current Ξ^- analysis at HADES
- Possibilities with a 30 GeV proton beam

General HADES

High-Acceptance Di-Electron Spectrometer

- Operating at GSI at SIS18 since 2001
- Precise spectroscopy of e^+e^- pairs and charged hadrons
- pp and heavy ion (e.g. Ag-Ag, Au-Au) collisions
- Main purpose: Dense nuclear matter properties via in-medium hadron properties
- Hyperon physics a hot topic lately
- Acceptance of detector: ${\sim}15\text{-}85^\circ$

Forward Detector Upgrades

- Covers angles between ${\sim}1\text{-}7^{\circ}$
- Straw Tracking Stations (STS)
 - Based on PANDA design
 - Geometrical track Reconstruction
 - 8 double layers of straws
- Forward Resistive Plate Chamber (fRPC) timing detector
 - Momentum estimation
 - Magnetic field free region, mass hypothesis of protons currently assumed
- Used in feb21 proton test beam data taking and feb22 proton beam physics run

Hyperons in Neutron Stars

- Neutron Stars a very hot and interesting topic
- Hyperon Puzzle
 - Strangeness production favorable
 - Reduction of Fermi pressure
 - Softer EOS
 - Lower allowed mass compared to observed mass
- Could solve the Puzzle
 - Three-body hyperon interactions or strong repulsion in YN or YNN interactions
 - Stronger constraints on the hyperon-neutron force are necessary

Ξ^- Correlations

Femtoscopy studies via correlation function

$$C(p_1, p_2) \equiv \frac{P(p_1, p_2)}{P(p_1) \cdot P(p_2)}$$

Need low relative momentum, $k < 20\mathchar`-50$ MeV

- Ξ^- -N interactions predicted to affect EOS
- First Ξ[−]-p correlations measured at ALICE [*]
- Results imply stiffer EOS
- Need further studies in $p{+}p$ and $p{+}Ag$ reactions with HADES

Previous HADES measurements

- Excess of sub-threshold $\Xi^$ production measured in Ar+KCl Reactions at 1.76AGeV [*] and p(3.5 GeV)+Nb collisions [**]
- Can be explained by resonances with significant branching fractions into the Ξ^- channel [***]
- Need spectroscopy of ${\rm N}^*\to \Xi^- K^+ K^+ \text{ in } {\rm p+p \ reactions}$

```
Figs. from [**]
```

```
[*] PRL 103, 132301 (2009)
[**] Phys. Rev. Lett. 114, 212301
[***] J. Steinheimer et al., J.Phys. G43 (2016) 015104
```


$pp \to \Xi^- p K^+ K^+$

 $p(4.5GeV)p\rightarrow \Xi^-pK^+K^+\rightarrow\Lambda\pi^-pK^+K^+\rightarrow p\pi^-\pi^-pK^+K^+$

- 8×10^3 expected number of reconstructed events
- Cross section estimates: 0.35 μb 35 μb
- Goal of analysis
 - Cross section determination
 - Interaction studies
 - YN-potential for double strange particles
 - Spectroscopy

Analysis Details

- 10 000 000 events
- Very rough PID selection
 - Use mass reconstructed from tof and select particles within \pm 300 MeV of nominal PDG mass
- Require at least one proton and pion

9/18

$pp \rightarrow \Xi^- p K^+ K^+$, Analysis procedure

Approach 1.

- Reconstruct Λ from $p\pi^-$
- Select only combinations where closest distance is < 20 mm
- Create a neutral candidate
- Combine the best candidate in each event with an additional π^-

Λ Mass

- All combinations
- Closest combinations
- All combinations that pass a mass fit $p_{fit} > 10^{-4}$
- The one combination in one event with the best fit probability

Need to find suitable variable in inclusive event to test if good Λ candidates remain - mass peak not suitable when mass constraint applied

э

Λ and Ξ^- Mass in Simulations

- Mass histograms without background
- Simulations give information on what resolution to expect

Vertex separations in Simulations

Possible additional selection: $z_{dv} - z_{pv} > 0$

- Different vertexing methods in HYDRA (HADES software)
 - Primary vertex
 - Point-of-closest approach between particles from vertex
 - Add beamline
 - Add constructed neutral particle
 - Decay vertex
 - Point-of-closest approach between particles
 - Best option under investigation for many channels in data and simulations

$pp \rightarrow \Xi^- p K^+ K^+$, Analysis procedure

Approach 2.

- Find p, K⁺ and K⁺
- Reconstruct Ξ^- from a missing particle fit constraining primary particles to beam-target system
- See a fitted mass but needs more analysis

Benefits of higher energy proton beam

- More channels open up, e.g. excited Ξ or Ω^- production
- Higher cross sections for many channels
- Higher production rates with higher luminosity beam (*e.g.* 10¹¹ protons per spill)
- Current analysis at HADES to observe Σ^0 Dalitz decay
 - First observation
 - Challenging due to small branching fraction (5×10⁻³) higher luminosities + production cross sections at higher energies important!
- Could be explored in the future with PANDA with $\bar{p}p$ collisions
- Possibility to observe Dalitz decays of excited Ξ at higher proton beam momenta?

Cascade spectroscopy

- Need more multi-strange excited baryon data for spin and parity assignment
 - PWA
- Focus on excited Ξ[−] states
- Ω⁻ also needs investigations
- cm energy = 7.5 GeV enough to populate higher lying resonances
- Coincides well with planned measurements at PANDA with pp interactions where PANDA has contributed strongly [*]
 [*] Eur. Phys. J. A (2021)

1/2	(00,00)	1/2 1 (555)	7(1110)	2(1155)	2(1310)		
$1/2^+$	$(56,0^+_2)$	1/2 N(1440)	$\Lambda(1600)$	$\Sigma(1660)$	$\Xi(1690)^{\dagger}$		
$1/2^{-}$	$(70,1_{1}^{-})$	1/2 N(1535)	$\Lambda(1670)$	$\Sigma(1620)$	$\Xi(?)$	$\Lambda(1405)$	
				$\Sigma(1560)^{\dagger}$			
$3/2^{-}$	$(70,1_{1}^{-})$	1/2 N(1520)	A(1690)	$\Sigma(1670)$	$\Xi(1820)$	A(1520)	
$1/2^{-}$	(70.1^{-})	3/2 N(1650)	A(1800)	$\Sigma(1750)$	$\Xi(?)$	` '	
/ -	()-1/	-//	()	$\Sigma(1620)^{\dagger}$	- (-)		
$3/2^{-}$	(70.1^{-}_{1})	3/2 N(1700)	$\Lambda(?)$	$\Sigma(1940)^{\dagger}$	$\Xi(?)$		
$5/2^{-}$	(70.1^{-1})	3/2 N(1675)	A(1830)	$\Sigma(1775)$	$\Xi(1950)^{\dagger}$		
$1/2^+$	(70.0^{+})	1/2 N(1710)	A(1810)	$\Sigma(1880)$	$\Xi(2)$	$A(1810)^{\dagger}$	
$3/2^+$	(56.2^+)	1/2 N(1720)	A(1890)	$\Sigma(2)$	$\Xi(2)$	(1010)	
5/2+	(56.2^+)	1/2 N(1680)	A(1820)	$\Sigma(1915)$	$\Xi(2030)$		
7/2-	(70.3^{-})	1/2 N(2190) 1/2 N(2190)	A(?)	$\Sigma(2)$	$\Xi(2000)$	A(2100)	
0/2-	$(70, 3^{-})$	3/2 N(2250)	A(2)	$\Sigma(2)$	$\Xi(2)$	11(2100)	
9/2	$(70,3_3)$	3/2 N(2230) 1/0 N(2230)	A(0250)	$\Sigma(1)$	$\Xi(:)$		
9/2	(50,44)	1/2 N(2220)	A(2350)	2(:)	$\Xi(i)$		
	Decuplet members						
$3/2^{+}$	$(56,0^+_0)$	$3/2 \Delta(1232)$	$\Sigma(1385)$	$\Xi(1530)$	$\Omega(1672)$		
$3/2^{+}$	$(56,0^+_2)$	$3/2 \Delta(1600)$	$\Sigma(1690)^{\dagger}$	$\Xi(?)$	$\Omega(?)$		
$1/2^{-}$	$(70,1_1^-)$	$1/2 \Delta(1620)$	$\Sigma(1750)^{\dagger}$	$\Xi(?)$	$\Omega(?)$		
$3/2^{-}$	$(70,1_{1}^{-})$	$1/2 \ \Delta(1700)$	$\Sigma(?)$	$\Xi(?)$	$\Omega(?)$		
$5/2^{+}$	$(56,2^+_2)$	$3/2 \Delta(1905)$	$\Sigma(?)$	$\Xi(?)$	$\Omega(?)$		
$7/2^+$	$(56,2^+_2)$	$3/2 \Delta(1950)$	$\Sigma(2030)$	$\Xi(?)$	$\Omega(?)$		
$11/2^+$	(56.4^{+})	$3/2 \Delta(2420)$	$\Sigma(?)$	$\Xi(?)$	$\Omega(?)$		

Octet members

 $\nabla(1109) = (1919)$

Prog. Theor. Exp. Phys.2020, 083C01 (2020) and 2021 update

Jenny Regina (GSI)

57: 184

Hyperons at HADES

 (D, L_{N}^{P}) S

March 8, 2023

Singlets

16/18

Summary and Outlook

Summary

- pp collisions at HADES offer possibilities to perform hyperon physics complementary to that at PANDA
- Example of data analysis for Ξ⁻
- Higher proton beam energies beneficial open up more channels and offer cross sections

Outlook

- Analyze full data set
- Test different vertexing methods in data and apply cuts
- Optimize error estimates for fitting

Thank you!

1

590

◆□▶ ◆□▶ ◆ □▶ ◆ □▶