

SMASH Status and Plans

Hannah Elfner

September 22nd 2023, TMEP Workshop, GSI

Why a new Approach?

- Hadronic transport approaches are successfully applied for the dynamical evolution of heavy ion collisions
- Hadronic non-equilibrium dynamics is crucial for
 - Full/partial evolution at low/ intermediate beam energies
 - Late stage rescattering at high beam energies (RHIC/LHC)

- New experimental data for cross-sections and resonance properties is available (e.g. COSY, GSI-SIS18 pion beam etc)
- Philosophy: Flexible, modular approach condensing knowledge from existing approaches
- Goal: Baseline calculations with hadronic vacuum properties essential to identify phase transition

SMASH*

Hadronic transport approach:

J. Weil et al, PRC 94 (2016)

- Includes all mesons and baryons up to ${\sim}2~\text{GeV}$
- Binary interactions: Inelastic collisions through resonance/string excitation and decay
- Infrastructure: C++, Git, Doxygen, ROOT, HepMC, RIVET
- Used as a library by many groups for afterburner

* Simulating Many Accelerated Strongly-Interacting Hadrons

The SMASH Team

In Frankfurt:

- Gabriele Inghirami
- Alessandro Sciarra
- Hendrik Roch
- Justin Mohs
- Jan Hammelmann
- Niklas Götz
- Renan Hirayama
- Nils Saß
- Carl Rosenkvist
- Antonio Bozic
- Lucas Constantin
- Timo Füle
- Robin Sattler

- In US/Bielefeld/Slovakia:
 - Agnieszka Sorensen
 - Oscar Garcia-Montero
 - Zuzana Paulinyova

Group excursion in May 2022

Transparent Development

- Stringent rules for software development
 - Each newly implemented feature goes through an internal review process
 - ~100 unit tests, enforced documentation and user guide
- For each new public version physics analysis suite is run (as well open source available)
 https://github.com/smash-transport/ smash-analysis

Degrees of Freedom

Ν	Δ	٨	Σ	Ξ	Ω		Un	flavored		Strange	
N ₉₃₈	Δ ₁₂₃₂	Λ ₁₁₁₆	Σ ₁₁₈₉	Ξ ₁₃₂₁	Ω ⁻ 1672	π ₁₃₈	f _{0 980}	f _{2 1275}	π _{2 1670}	K ₄₉₄	
N ₁₄₄₀	Δ ₁₆₂₀	Λ_{1405}	Σ ₁₃₈₅	Ξ ₁₅₃₀	Ω ⁻ 2250	π ₁₃₀₀	f _{0 1370}	f ₂ ′ ₁₅₂₅		K* ₈₉₂	
N ₁₅₂₀	Δ ₁₇₀₀	Λ ₁₅₂₀	Σ ₁₆₆₀	Ξ ₁₆₉₀		π_{1800}	f _{0 1500}	f _{2 1950}	ρ _{3 1690}	K _{1 1270}	
N ₁₅₃₅	Δ ₁₉₀₀	Λ_{1600}	Σ ₁₆₇₀	Ξ ₁₈₂₀			f _{0 1710}	f _{2 2010}		K _{1 1400}	
N ₁₆₅₀	Δ ₁₉₀₅	Λ_{1670}	Σ1750	Ξ1950		η 548		f _{2 2300}	фз 1850	K* ₁₄₁₀	
N ₁₆₇₅	Δ ₁₉₁₀	Λ_{1690}	Σ1775	Ξ2030		η ΄958	a 0 980	f _{2 2340}		K ₀ * ₁₄₃₀	
N ₁₆₈₀	Δ ₁₉₂₀	Λ_{1800}	Σ ₁₉₁₅			η 1295	a 0 1450		a 4 2040	K ₂ * ₁₄₃₀	
N ₁₇₀₀	Δ ₁₉₃₀	Λ_{1810}	Σ ₁₉₄₀			η 1405		f _{1 1285}		K* ₁₆₈₀	
N ₁₇₁₀	Δ ₁₉₅₀	Λ ₁₈₂₀	Σ ₂₀₃₀			η 1475	ф1019	f _{1 1420}	f _{4 2050}	K _{2 1770}	
N ₁₇₂₀		Λ_{1830}	Σ2250				ф1680			K ₃ * ₁₇₈₀	
N ₁₈₇₅		Λ_{1890}				σ ₈₀₀		a _{2 1320}		K _{2 1820}	
N ₁₉₀₀		Λ ₂₁₀₀					h _{1 1170}			K 4 [*] 2045	
N ₁₉₉₀		Λ ₂₁₁₀				ρ ₇₇₆		$\pi_{1 \ 1400}$			
N ₂₀₆₀ N ₂₀₈₀		Λ ₂₃₅₀				ρ ₁₄₅₀	b _{1 1235}	$\pi_{1\ 1600}$			+ (
N ₂₀₈₀						ρ ₁₇₀₀					an
N ₂₁₂₀							a _{1 1260}	η 2 1645			Pe re
N ₂₁₂₀						ω ₇₈₃				A I	bh
N ₂₂₂₀						ω 1420		ω 3 1670			lik
N ₂₂₅₀				^	s of SMASH-1.7	ω ₁₆₅₀					so

- Mesons and baryons according to particle data group
- Isospin multiplets and anti-particles are included

Nuclear Structure

- Deformations can be given by parameters
- Input from nuclear wave functions including NN correlations, neutron J. Hammelmann et al, PRC 101, 2020
- Nuclear configurations generated using $\left\|\Psi\right\|^2$ as a probability density

$$\Psi(\vec{r}_1, ..., \vec{r}_A) = \prod_{i < i}^A \hat{f}(r_{ij}) \Phi(\vec{r}_1, ..., \vec{r}_A)$$

• Spin-isospin correlation operator's from variational calculations

$$\hat{f}(r_{ij}) = \sum_{n=(1,\sigma,\mathbb{S})\otimes 1\tau} \hat{f}^{(n)}(r_{ij})$$

- Reproduces any nuclear profiles and two-body densities of several nuclei by inclusion of NN correlations M. Alvioli, H.-J. Drescher, M. Strikman, PLB 680 (2009)
- Added neutron skin and deformations where appropriate
- Plan: Include momentum space correlations; Isobar calculation; Initial state studies at high beam energies

Pion Production in Au+Au

- Potentials decrease pion production, while Fermi motion increases yield
- Nice agreement with SIS experimental data

Note: consecutive addition of features

J. Weil et al, PRC 94 (2016)

Collective Flow -v₂

 Directed and elliptic flow are compared to available data from FOPI and HADES

charged particles, 1y1<0.1

SMASH agrees well with previous UrQMD calculation

Progress on Potentials

TMEP Workshop

09/22/23

- Coulomb potential has been implemented
- VDF potential has been developed (see Agnieszka Sorensen), external project contributing to SMASH
- Momentum dependence for Skyrme has been implemented (see talk by Justin Mohs)
 HADES data from PRL 125, 2020
- Symmetry energy is available with variations from TMEP project
 - Plan: Bayesian analysis with HADES data; Comparison to FOPI data with A. Andronic et al

10

Light Clusters

- Microscopic formation and destruction of deuterons
 - Via fictitious deuteron resonance
 - Via explicit 3<->2 reactions

Implemented reactions $\pi d \leftrightarrow \pi np$ $Nd \leftrightarrow Nnp$ $\pi d \leftrightarrow NN$ $\bar{N}d \leftrightarrow \bar{N}np$

+elastic channels

- In progress: Extended to 3N clusters and Hypertriton, but lots of unknown cross-sections and properties, also approximation as point particle gets worse
 D. Oliinychenko et al, *Phys.Rev.C* 99 (2019) J. Staudenmaier et al, *Phys.Rev.C* 104 (2021)
- Coalescence-based clustering algorithm
 - Similar to the one used in UrQMD studies by Hillmann et al
 - Collaborating with Spieß et al to improve centrality map for HADES data (as an example to establish procedure)

Electromagnetic Probes

- Dileptons and photons implemented perturbatively
- Dileptons systematically compared to HADES data (including coarse-graining)
 J. Staudenmaier et al, Phys.Rev.C 98 (2018)
- Photons in afterburner compared to hydrodynamic emission
 A. Schäfer et al, Phys. Rev. D 99 (2019), Phys.Rev.C 105 (2022)
- Plan: Dilepton flow compared to HADES data; Prediction for excitation function for CBM

Moving to Higher Energies

- High energy cross-section is dominated by string excitation and fragmentation
 J. Mohs, S. Ryu and HE, J.Phys.G 47 (2020)
- Soft strings
 - Pythia is only employed for fragmentation
 - Single-diffractive, double diffractive and nondiffractive processes
- Hard strings
 - Fully treated by Pythia
 - All species mapped to pions and nucleons

 Note: SMASH-2.0 includes optimised Pythia calls to reduce run-time

Baryon Stopping and Initial State

- All parameters of the string model are tuned to elementary pp data from SPS
- Proton rapidity spectrum is described over a large range of beam energies
 J. Mohs, S. Ryu, HE J.Phys.G 47 (2020)

Important first step for studying more involved observables

SMASH-vHLLE Hybrid Approach

SMASH

- Modular hybrid approach for intermediate and high energy heavy-ion collisions
- Open source and public

VHLLE

- Hadronic transport approach Initial conditions
- 3+1 D viscous hydrodynamics (event-by-event)
 - Cornelius routine for hypersurface

A. Schäfer et al., Eur.Phys.J.A 58 (2022) Huovinen et al.: Eur. Phys. J A 48 (2012) Karpenko et al.: PRC 91, 064901 (2015) Karpenko et al.: Comput. Phys. Commun. 185 (2014)

Dynamical Initial State

- SMASH particles are converted to fluid when the cells get to high enough energy density
- Allows to apply hybrid approach down to ~1 GeV/nucleon
- Phase transition can be controlled within hydrodynamics

Hannah Elfner

Transport Coefficients

- Shear and bulk viscosity as a function of temperature
- (Cross-) conductivities for all charges B, S, Q as a function of temperature

J. Hammelmann, J. Staudenmaier and HE, arXiv:2307.15606

Other Plans

- Further collaboration with JETSCAPE/XSCAPE and MUSES
- Strangeness production
 - Fix elementary production and resonance properties with statistical analysis
 - Look at hyperon-nucleon potentials
- Angular momentum and spin
 - Global angular momentum has been analyzed
 - Spin for hadronic reactions -> work in progress
- Conserved charge fluctuations
 - Influence of conservation laws and cuts
 - Fate during hadronic rescattering

Open Source Strategy

- Visit the webpage to find publications and link to SMASH-3.0 results <u>https://smash-transport.github.io</u>
- Download the code at <u>https://github.com/smash-transport/smash</u>

SMASH-3.0 has HepMC and RIVET

19

- Checkout the Analysis Suite at <u>https://github.com/smash-transport/smash-analysis</u>
- Find user guide and documentation at <u>https://github.com/smash-transport/smash/releases</u>
- Animations and Visualization Tutorial under <u>https://smash-transport.github.io/movies.html</u>

Simulating Many Accelerated Strong Manage topics	ly-interacting Hadrons	♦ Code ③ Issues 0								
🕞 6,590 commits	P 1 branch 🛇 2 releases 🏭 13 contributors	कु GPL-3.0	Releases Tags Draft a new release							
Branch: master - New pull request	Create new file Upload files Find f	ile Clone or download -	on 4 Dec 2018 ♥ SMASH-1.5.1 or f068109 L zip tar.gz							
elfnerhannah Merge pull request #132	from smash-transport/schaefer/fix_bug_nuclear Latest com Adjustments for running with JetScape	mit f068109 on 4 Dec 2018 4 months ago	Latest release First public version of SMASH							
i bin	Updated benchmark decaymodes	3 months ago	 SMASH-1.5 elfnerhannah released this on 27 Nov 2018 · 6 commits to master since this release 							
Cmake	Use lightweight tags for version	4 months ago	Useful extras:							
doc	Updated links in README.md and CONTRIBUTING.md to link to the correct	3 months ago	Here is an overview of Physics results for elementary cross-sections, basic bulk observables and							
examples/using_SMASH_as_library	Update pythia version in README.md and removed trailing whitespace.	4 months ago	infinite matter calculations							
input	Fix parity for light nuclei decays	3 months ago	User Guide							
STC .	Merge pull request #132 from smash-transport/schaefer/fix_bug_nuclear	2 months ago	HTML Documentation							
TMEP Workshop										

09/22/23

Summary

- SMASH has been developed as a new hadronic transport approach
 - Bulk observables are in reasonable agreement with experimental data
 - Electromagnetic radiation is incorporated
 - Baryon stopping within string model
 - Hybrid approach for beam energy scan
- Plans:
 - More robust study of nuclear EoS with comparison to new HADES flow data
 - New PhD student focusing on strangeness production
 - EM probes from dynamic hybrid approach