

SMASH Status and Plans

Hannah Elfner

September 22nd 2023, TMEP Workshop, GSI

Why a new Approach?

- Hadronic transport approaches are successfully applied for the dynamical evolution of heavy ion collisions
- Hadronic non-equilibrium dynamics is crucial for
 - Full/partial evolution at low/ intermediate beam energies
 - Late stage rescattering at high beam energies (RHIC/LHC)

- New experimental data for cross-sections and resonance properties is available (e.g. COSY, GSI-SIS18 pion beam etc)
- Philosophy: Flexible, modular approach condensing knowledge from existing approaches
- Goal: Baseline calculations with hadronic vacuum properties essential to identify phase transition

SMASH*

Hadronic transport approach:

- J. Weil et al, PRC 94 (2016)
- Includes all mesons and baryons up to ~2 GeV
- Binary interactions: Inelastic collisions through resonance/string excitation and decay
- Infrastructure: C++, Git, Doxygen, ROOT, HepMC, RIVET
- Used as a library by many groups for afterburner

* Simulating Many Accelerated Strongly-Interacting Hadrons

The SMASH Team

In Frankfurt:

- Gabriele Inghirami
- Alessandro Sciarra
- Hendrik Roch
- Justin Mohs
- Jan Hammelmann
- Niklas Götz
- Renan Hirayama
- Nils Saß
- Carl Rosenkvist
- Antonio Bozic
- Lucas Constantin
- Timo Füle
- Robin Sattler

- In US/Bielefeld/Slovakia:
 - Agnieszka Sorensen
 - Oscar Garcia-Montero
 - Zuzana Paulinyova

Group excursion in May 2022

Transparent Development

- Stringent rules for software development
 - Each newly implemented feature goes through an internal review process
 - ~100 unit tests, enforced documentation and user guide
- For each new public version physics analysis suite is run

(as well open source available)

https://github.com/smash-transport/ smash-analysis

Degrees of Freedom

N	Δ	٨	Σ	Ξ	Ω	Unflavored				Strange
N ₉₃₈	Δ ₁₂₃₂	Λ ₁₁₁₆	Σ ₁₁₈₉	Ξ ₁₃₂₁	Ω- ₁₆₇₂	π ₁₃₈	f _{0 980}	f _{2 1275}	π _{2 1670}	K ₄₉₄
N ₁₄₄₀	Δ_{1620}	Λ_{1405}	Σ_{1385}	= ₁₅₃₀	Ω -2250	π_{1300}	f _{0 1370}	f ₂ ′ ₁₅₂₅		K* ₈₉₂
N_{1520}	Δ_{1700}	Λ_{1520}	Σ_{1660}	= ₁₆₉₀		π_{1800}	f _{0 1500}	f _{2 1950}	ρ _{3 1690}	K _{1 1270}
N_{1535}	Δ_{1900}	Λ_{1600}	Σ ₁₆₇₀	Ξ ₁₈₂₀			f _{0 1710}	f _{2 2010}		K _{1 1400}
N ₁₆₅₀	Δ_{1905}	Λ_{1670}	Σ_{1750}	= ₁₉₅₀		η ₅₄₈		f _{2 2300}	Фз 1850	K* ₁₄₁₀
N ₁₆₇₅	Δ_{1910}	Λ_{1690}	Σ ₁₇₇₅	=2030		η΄ ₉₅₈	a _{0 980}	f _{2 2340}		$K_0^*_{1430}$
N ₁₆₈₀	Δ_{1920}	Λ_{1800}	Σ_{1915}			η ₁₂₉₅	a _{0 1450}		a _{4 2040}	$K_{2}^{*}_{1430}$
N ₁₇₀₀	Δ_{1930}	Λ_{1810}	Σ_{1940}			η ₁₄₀₅		f _{1 1285}		K* ₁₆₈₀
N ₁₇₁₀	Δ_{1950}	Λ_{1820}	Σ_{2030}			η ₁₄₇₅	Ф1019	f _{1 1420}	f _{4 2050}	K _{2 1770}
N ₁₇₂₀		Λ_{1830}	Σ_{2250}				Ф1680			$K_{3}^{*}_{1780}$
N ₁₈₇₅		Λ_{1890}				σ ₈₀₀		a _{2 1320}		$K_{2\ 1820}$
N ₁₉₀₀		Λ_{2100}					h _{1 1170}			$K_4^*_{2045}$
N ₁₉₉₀ N ₂₀₆₀		Λ_{2110}				ρ ₇₇₆		π_{11400}		
N ₂₀₈₀		Λ_{2350}				ρ ₁₄₅₀	b _{1 1235}	π_{11600}		•
N ₂₁₀₀						ρ ₁₇₀₀				
N ₂₁₂₀							a _{1 1260}	η _{2 1645}		
N ₂₁₉₀						ω ₇₈₃				
N ₂₂₂₀						ω ₁₄₂₀		ω _{3 1670}		
N ₂₂₅₀				Δ	s of SMASH-1.7	ω ₁₆₅₀				

- Mesons and baryons according to particle data group
- Isospin multiplets and anti-particles are included

Nuclear Structure

- Deformations can be given by parameters
- Input from nuclear wave functions including NN correlations, neutron J. Hammelmann et al, PRC 101, 2020
- Nuclear configurations generated using $\|\Psi\|^2$ as a probability density

$$\Psi(\vec{r}_1, ..., \vec{r}_A) = \prod_{i=1}^{A} \hat{f}(r_{ij}) \Phi(\vec{r}_1, ..., \vec{r}_A)$$

• Spin-isospin correlation operators from variational calculations

$$\hat{f}(r_{ij}) = \sum_{n=(1,\sigma,\mathbb{S})\otimes 1\tau} \hat{f}^{(n)}(r_{ij})$$

- Reproduces any nuclear profiles and two-body densities of several nuclei by inclusion of NN correlations M. Alvioli, H.-J. Drescher, M. Strikman, PLB 680 (2009)
- Added neutron skin and deformations where appropriate
- Plan: Include momentum space correlations; Isobar calculation; Initial state studies at high beam energies

Pion Production in Au+Au

- Potentials decrease pion production, while Fermi motion increases yield
- Nice agreement with SIS experimental data

Note: consecutive addition of features

J. Weil et al, PRC 94 (2016)

Collective Flow -V2

 Directed and elliptic flow are compared to available data from FOPI and HADES

SMASH agrees well with previous UrQMD calculation

Au + Au: protons

 $|y_0| \equiv |y/y_p| < 0.1$

5.5 < b < 7.5 fm

10¹

Progress on Potentials

- Coulomb potential has been implemented
- VDF potential has been developed (see Agnieszka Sorensen), external project contributing to SMASH
- Momentum dependence for Skyrme has been implemented (see talk by Justin Mohs)

 HADES data from PRL 125, 2020
- Symmetry energy is available with variations from TMEP project
 - Plan: Bayesian analysis with HADES data; Comparison to FOPI data with A. Andronic et al

Light Clusters

- Microscopic formation and destruction of deuterons
 - Via fictitious deuteron resonance
 - Via explicit 3<->2 reactions

Implemented reactions
$$\pi d \leftrightarrow \pi np$$
 $Nd \leftrightarrow Nnp$ $\pi d \leftrightarrow NN$ $\bar{N}d \leftrightarrow \bar{N}np$ +elastic channels

- In progress: Extended to 3N clusters and Hypertriton, but lots of unknown cross-sections and properties, also approximation as D. Oliinychenko et al, *Phys.Rev.C* 99 (2019) point particle gets worse
 - J. Staudenmaier et al, *Phys.Rev.C* 104 (2021)
- Coalescence-based clustering algorithm
 - Similar to the one used in UrQMD studies by Hillmann et al
 - Collaborating with Spieß et al to improve centrality map for HADES data (as an example to establish procedure)

Electromagnetic Probes

- Dileptons and photons implemented perturbatively
- Dileptons systematically compared to HADES data (including coarse-graining)
 J. Staudenmaier et al, Phys. Rev. C 98 (2018)
- Photons in afterburner compared to hydrodynamic
 A. Schäfer et al, Phys. Rev. D 99 (2019), Phys.Rev.C 105 (2022)

Plan: Dilepton flow compared to HADES data; Prediction

for excitation function for CBM

Moving to Higher Energies

- High energy cross-section is dominated by string
 excitation and fragmentation

 J. Mohs, S. Ryu and HE, J. Phys. G 47 (2020)
- Soft strings
 - Pythia is only employed for fragmentation
 - Single-diffractive, double diffractive and nondiffractive processes
- Hard strings
 - Fully treated by Pythia
 - All species mapped to pions and nucleons

 Note: SMASH-2.0 includes optimised Pythia calls to reduce run-time

Baryon Stopping and Initial State

- All parameters of the string model are tuned to elementary pp data from SPS
- Proton rapidity spectrum is described over a large range of beam energies
 J. Mohs, S. Ryu, HE J. Phys. G 47 (2020)

Important first step for studying more involved observables

SMASH-vHLLE Hybrid Approach

- Modular hybrid approach for intermediate and high energy heavy-ion collisions
- Open source and public

- Hadronic transport approach
- Initial conditions

- 3+1 D viscous hydrodynamics (event-by-event)
- Cornelius routine for hypersurface

https://github.com/smash-transport/smash-vhlle-hybrid

smash-hadron-sampler

- Cooper-Frye sampler
- Particlization of fluid elements

SMASH

- Hadronic transport approach
- Evolution of hadronic rescattering

A. Schäfer et al., Eur. Phys. J.A 58 (2022) Huovinen et al.: Eur. Phys. J A 48 (2012)

Karpenko et al.: PRC 91, 064901 (2015)

Karpenko et al.: Comput. Phys. Commun. 185 (2014)

Dynamical Initial State

- SMASH particles are converted to fluid when the cells get to high enough energy density
- Allows to apply hybrid approach down to ~1 GeV/nucleon
- Phase transition can be controlled within hydrodynamics

R. Hirayama, work in progress

Transport Coefficients

- Shear and bulk viscosity as a function of temperature
- (Cross-) conductivities for all charges B, S, Q as a function of temperature

J. Hammelmann, J. Staudenmaier and HE, arXiv:2307.15606

Other Plans

- Further collaboration with JETSCAPE/XSCAPE and MUSES
- Strangeness production
 - Fix elementary production and resonance properties with statistical analysis
 - Look at hyperon-nucleon potentials
- Angular momentum and spin
 - Global angular momentum has been analyzed
 - Spin for hadronic reactions -> work in progress
- Conserved charge fluctuations
 - Influence of conservation laws and cuts
 - Fate during hadronic rescattering

Open Source Strategy

- Visit the webpage to find publications and link to SMASH-3.0 results https://smash-transport.github.io
- Download the code at https://github.com/smash-transport/smash
- SMASH-3.0 has HepMC and RIVET
- Checkout the Analysis Suite at https://github.com/smash-transport/smash-analysis
- Find user guide and documentation at https://github.com/smash-transport/smash/releases
- Animations and Visualization Tutorial under https://smash-transport.github.io/movies.html

Summary

- SMASH has been developed as a new hadronic transport approach
 - Bulk observables are in reasonable agreement with experimental data
 - Electromagnetic radiation is incorporated
 - Baryon stopping within string model
 - Hybrid approach for beam energy scan
- Plans:
 - More robust study of nuclear EoS with comparison to new HADES flow data
 - New PhD student focusing on strangeness production
 - EM probes from dynamic hybrid approach