## What is needed to support HIC research

- Funding for experiment
  - Good news (as I understood it from talks):
  - continued support for HADES
  - continued development of FAIR/CBM
  - support for EOS @ FRIB experiments
  - other experiments: INDRA-FAZIA, RAON, CEE, ...
- Support for theory

  - complex projects to further develop these simulations *need* support for collaborations

- realizing the potential of HIC experiments *needs* interpretations of data from transport simulations - long-term developments *need* the existence of viable career paths for early career researchers





## Who is doing transport research

### What is the state of the hadronic transport theory *community*?

Among participants of this meeting:

IN SENIOR POSITIONS:

E. Bratkovskaya M. Colonna D. Cozma H. Elfner Z.-Q. Feng N. Ikeno U. Mosel P. Napolitani A. Ono H. Wolter J. Xu Y. Zhang

EARLY CAREER:

H.-G. Cheng J. Mohs A. Sorensen R. Wang

Agnieszka Sorensen

In the US: IN SENIOR POSITIONS: P. Danielewicz C.-M. Ko V. Koch B.-A. Li Z.-W. Lin J. Lopez

S. Bass

### EARLY CAREER:

O. Savchuk A. Sorensen





# Who is doing transport research

### What is the state of the hadronic transport theory *community*?

| Among participar<br>IN SENIOR POSI<br>E. Bratkovskaya<br>M. Colonna<br>D. Cozma<br>H. Elfner<br>ZQ. Feng<br>N. Ikeno<br>U. Mosel<br>P. Napolitani<br>A. Ono<br>H. Wolter<br>J. Xu<br>Y. Zhang | At the Seattle workshop (IN<br>IN SENIOR POSITIONS:<br>M. Colonna<br>D. Cozma<br>P. Danielewicz<br>N. Ikeno<br>CM. Ko<br>V. Koch<br>BA. Li<br>J. Lopez<br>U. Mosel<br>Y. Nara<br>A. Ono<br>S. Pratt<br>J. Randrup |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                               | J. Steinheimer<br>H. Wolter                                                                                                                                                                                       |
| gnieszka Sorensen                                                                                                                                                                             |                                                                                                                                                                                                                   |

Agnieszka Sorensen

### VT-22-84W):

EARLY CAREER:

J. Mohs

- A. Motornenko
- T. Reichert
- O. Savchuk
- A. Sorensen
- K.-J. Sun

SITIONS:

• • •

### EARLY CAREER:

O. Savchuk A. Sorensen

Maintaining the expertise is needed for CBM, FRIB400, CEE,





## About the U.S. LRP process = why we wrote the "Seattle" White Paper

White Paper written in response to the U.S. 2023 Long Range Plan (LRP) process • Community gathers at town hall meetings for 3 (really 4) areas:

- - Hot QCD & Cold QCD
  - Nuclear Structure, Reactions, and Astrophysics - Fundamental Symmetries
- Town hall meeting conveners write 3 white papers in their areas = **source material for the LRP** • Groups within the communities produce more white papers on specific subjects = what we did

physics projects (HICs, EIC,  $0\nu\beta\beta$ , ...)

- It's **not enough** to *say* that your science is "interesting" (*prove* it!)
- It's **not enough** to convince *your community* to support your science (they're *already* on your side!)
- You need to convince people who - are not really interested in your science - are also fighting for survival (= need money)

Agnieszka Sorensen

There are four distinct scientific communities, a finite amount of money, and many different interesting

Your arguments must be so good that nobody can oppose them in good conscience







### The "Seattle" White Paper

#### **A. Sorensen** et al., arXiv:2301.13253, to appear in JPPNP

#### Dense Nuclear Matter Equation of State from Heavy-Ion Collisions \*

Agnieszka Sorensen<sup>1</sup>, Kshitij Agarwal<sup>2</sup>, Kyle W. Brown<sup>3,4</sup>, Zbigniew Chajecki<sup>5</sup>,

Paweł Danielewicz<sup>3,6</sup>, Christian Drischler<sup>7</sup>, Stefano Gandolfi<sup>8</sup>, Jeremy W. Holt<sup>9,10</sup>, Matthias Kaminski<sup>11</sup>, Che-Ming Ko<sup>9,10</sup>, Rohit Kumar<sup>3</sup>, Bao-An Li<sup>12</sup>, William G. Lynch<sup>3,6</sup>, Alan B. McIntosh<sup>10</sup>, William G. Newton<sup>12</sup>, Scott Pratt<sup>3,6</sup>, Oleh Savchuk<sup>3,13</sup>, Maria Stefaniak<sup>14</sup>, Ingo Tews<sup>8</sup>, ManYee Betty Tsang<sup>3,6</sup>, Ramona Vogt<sup>15,16</sup>, Hermann Wolter<sup>17</sup>, Hanna Zbroszczyk<sup>18</sup>

#### **Endorsing authors:**

Navid Abbasi<sup>19</sup>, Jörg Aichelin<sup>20,21</sup>, Anton Andronic<sup>22</sup>, Steffen A. Bass<sup>23</sup>, Francesco Becattini<sup>24,25</sup>, David Blaschke<sup>26,27,28</sup>, Marcus Bleicher<sup>29,30</sup>, Christoph Blume<sup>31</sup>, Elena Bratkovskaya<sup>14,29,30</sup>, B. Alex Brown<sup>3,6</sup>, David A. Brown<sup>32</sup>, Alberto Camaiani<sup>33</sup>, Giovanni Casini<sup>25</sup>, Katerina Chatziioannou<sup>34,35</sup>, Abdelouahad Chbihi<sup>36</sup>, Maria Colonna<sup>37</sup>, Mircea Dan Cozma<sup>38</sup>, Veronica Dexheimer<sup>39</sup>, Xin Dong<sup>40</sup>, Travis Dore<sup>41</sup>, Lipei Du<sup>42</sup>, José A. Dueñas<sup>43</sup>, Hannah Elfner<sup>14,21,29,30</sup>, Wojciech Florkowski<sup>44</sup>, Yuki Fujimoto<sup>1</sup>, Richard J. Furnstahl<sup>45</sup>, Alexandra Gade<sup>3,6</sup>, Tetyana Galatyuk<sup>14,46</sup>, Charles Gale<sup>42</sup>, Frank Geurts<sup>47</sup>, Sašo Grozdanov<sup>48,49</sup>, Kris Hagel<sup>10</sup>, Steven P. Harris<sup>1</sup>, Wick Haxton<sup>40,50</sup>, Ulrich Heinz<sup>45</sup>, Michal P. Heller<sup>51</sup>, Or Hen<sup>52</sup>, Heiko Hergert<sup>3,6</sup>, Norbert Herrmann<sup>53</sup>, Huan Zhong Huang<sup>54</sup>, Xu-Guang Huang<sup>55,56,57</sup>, Natsumi Ikeno<sup>10,58</sup>, Gabriele Inghirami<sup>14</sup>, Jakub Jankowski<sup>26</sup>, Jiangyong Jia<sup>59,60</sup>, José C. Jiménez<sup>61</sup>, Joseph Kapusta<sup>62</sup>, Behruz Kardan<sup>31</sup>, Iurii Karpenko<sup>63</sup>, Declan Keane<sup>39</sup>, Dmitri Kharzeev<sup>60,64</sup>, Andrej Kugler<sup>65</sup>, Arnaud Le Fèvre<sup>14</sup>, Dean Lee<sup>3,6</sup>, Hong Liu<sup>66</sup>, Michael A. Lisa<sup>45</sup>, William J. Llope<sup>67</sup>, Ivano Lombardo<sup>68</sup>, Manuel Lorenz<sup>31</sup>, Tommaso Marchi<sup>69</sup>, Larry McLerran<sup>1</sup>, Ulrich Mosel<sup>70</sup>, Anton Motornenko<sup>21</sup>, Berndt Müller<sup>23</sup>, Paolo Napolitani<sup>71</sup> Joseph B. Natowitz<sup>10</sup>, Witold Nazarewicz<sup>3,6</sup>, Jorge Noronha<sup>72</sup>, Jacquelyn Noronha-Hostler<sup>72</sup>, Grażyna Odyniec<sup>40</sup>, Panagiota Papakonstantinou<sup>73</sup>, Zuzana Paulínyová<sup>74</sup>, Jorge Piekarewicz<sup>75</sup>, Robert D. Pisarski<sup>60</sup>, Christopher Plumberg<sup>76</sup>, Madappa Prakash<sup>7</sup>, Jørgen Randrup<sup>40</sup>, Claudia Ratti<sup>77</sup>, Peter Rau<sup>1</sup>, Sanjay Reddy<sup>1</sup>, Hans-Rudolf Schmidt<sup>2,14</sup>, Paolo Russotto<sup>37</sup>, Radoslaw Ryblewski<sup>78</sup>, Andreas Schäfer<sup>79</sup>, Björn Schenke<sup>60</sup>, Srimoyee Sen<sup>80</sup>, Peter Senger<sup>81</sup>, Richard Seto<sup>82</sup>, Chun Shen<sup>67,83</sup>, Bradley Sherrill<sup>3,6</sup>, Mayank Singh<sup>62</sup>, Vladimir Skokov<sup>83,84</sup>, Michał Spaliński<sup>85,86</sup>, Jan Steinheimer<sup>21</sup>, Mikhail Stephanov<sup>87</sup>, Joachim Stroth<sup>14,31</sup>, Christian Sturm<sup>14</sup>, Kai-Jia Sun<sup>88</sup>, Aihong Tang<sup>60</sup>, Giorgio Torrieri<sup>89,90</sup>, Wolfgang Trautmann<sup>14</sup>, Giuseppe Verde<sup>91</sup>, Volodymyr Vovchenko<sup>77</sup>, Ryoichi Wada<sup>10</sup>, Fuqiang Wang<sup>92</sup>, Gang Wang<sup>54</sup>, Klaus Werner<sup>20</sup>, Nu Xu<sup>40</sup>, Zhangbu Xu<sup>60</sup>, Ho-Ung Yee<sup>87</sup>, Sherry Yennello<sup>9,10,93</sup>, Yi Yin<sup>94</sup>

Agnieszka Sorensen

#### CONTENTS

#### I. Introduction

- A. Constraining the nuclear matter EOS using heavy-ion collisions
- B. Connections to fundamental questions in nuclear physics
- C. Upcoming opportunities
- D. Scientific needs

#### II. The equation of state from 0 to $5n_0$

- A. Transport model simulations of heavy-ion collisions
- B. Microscopic calculations of the EOS
- C. Neutron star theory

#### III. Heavy-ion collision experiments

- A. Experiments to extract the EOS of symmetric nuclear matter
- B. Experiments to extract the symmetry energy

#### IV. The equation of state from combined constraints

- A. Constraints
- B. EOS obtained by combining various constraint sets

#### V. Connections to other areas of nuclear physics

- A. Applications of hadronic transport
- **B.** Hydrodynamics

#### VI. Exploratory directions

- A. Dense nuclear matter EOS meeting extreme gravity and dark matter in supermassive neutron stars
- B. Nuclear EOS with reduced spatial dimensions
- C. Interplay between nucleonic and partonic degrees of freedom: SRC effects on nuclear EOS, heavy-ion reactions, and neutron stars
- D. High-density symmetry energy above  $2n_0$
- E. Density-dependence of neutron-proton effective mass splitting in neutron-rich matter

65

67

69

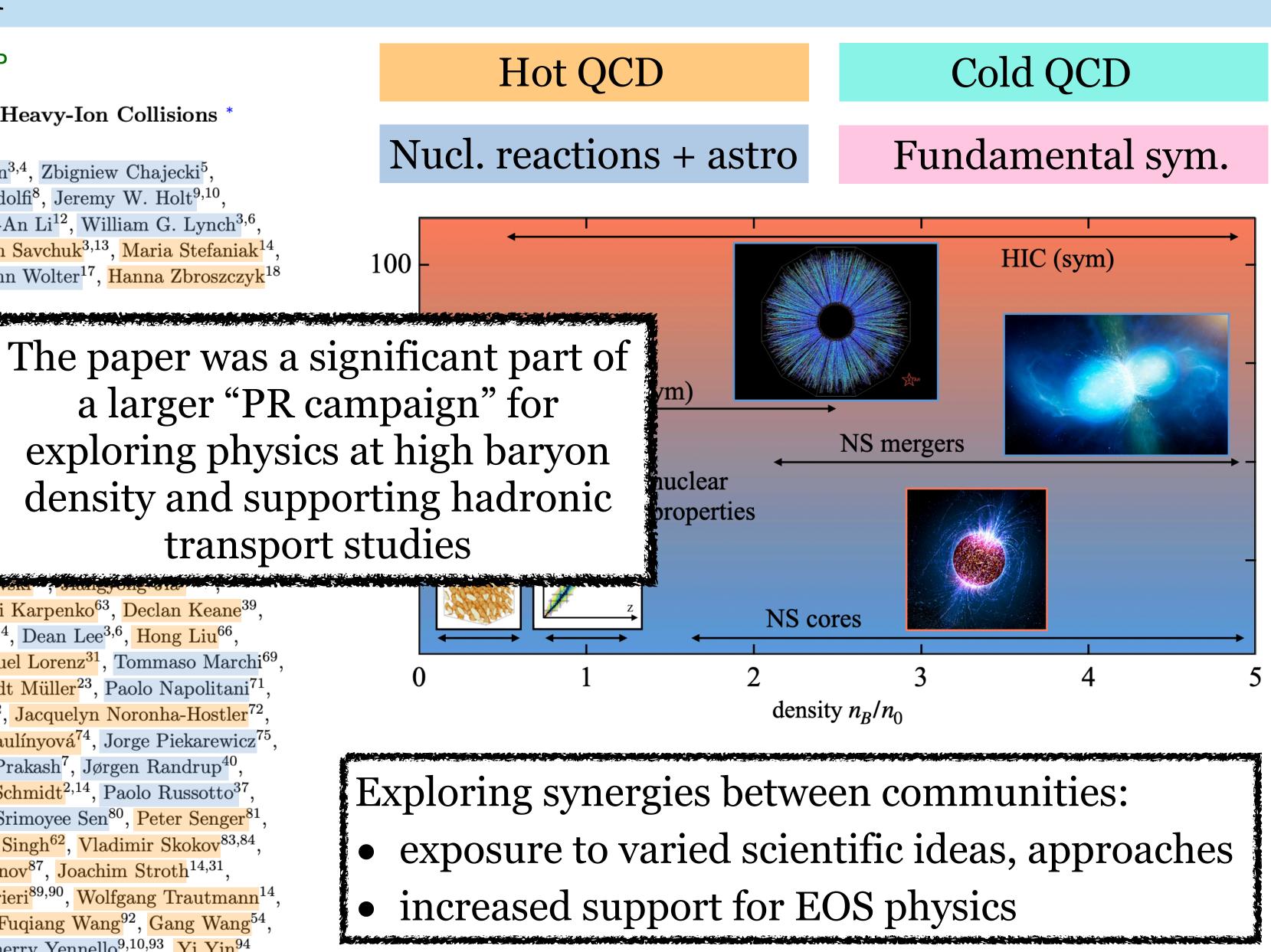


### The "Seattle" White Paper

### **A. Sorensen** et al., arXiv:2301.13253, to appear in JPPNP

Dense Nuclear Matter Equation of State from Heavy-Ion Collisions \*

Agnieszka Sorensen<sup>1</sup>, Kshitij Agarwal<sup>2</sup>, Kyle W. Brown<sup>3,4</sup>, Zbigniew Chajecki<sup>5</sup>, Paweł Danielewicz<sup>3,6</sup>, Christian Drischler<sup>7</sup>, Stefano Gandolfi<sup>8</sup>, Jeremy W. Holt<sup>9,10</sup>, Matthias Kaminski<sup>11</sup>, Che-Ming Ko<sup>9,10</sup>, Rohit Kumar<sup>3</sup>, Bao-An Li<sup>12</sup>, William G. Lynch<sup>3,6</sup>, Alan B. McIntosh<sup>10</sup>, William G. Newton<sup>12</sup>, Scott Pratt<sup>3,6</sup>, Oleh Savchuk<sup>3,13</sup>, Maria Stefaniak<sup>14</sup>, Ingo Tews<sup>8</sup>, ManYee Betty Tsang<sup>3,6</sup>, Ramona Vogt<sup>15,16</sup>, Hermann Wolter<sup>17</sup>, Hanna Zbroszczyk<sup>18</sup>


#### Endorsing authors:

Navid Abbasi<sup>19</sup>, Jörg Aichelin<sup>20,21</sup>, Anton Andronic<sup>22</sup>, Steffen David Blaschke<sup>26,27,28</sup>, Marcus Bleicher<sup>29,30</sup>, Christoph Blu B. Alex Brown<sup>3,6</sup>, David A. Brown<sup>32</sup>, Alberto Cam Katerina Chatziioannou<sup>34,35</sup>, Abdelouahad Chbihi<sup>36</sup>, Maria Veronica Dexheimer<sup>39</sup>, Xin Dong<sup>40</sup>, Travis Dore<sup>41</sup>, Li Hannah Elfner<sup>14,21,29,30</sup>, Wojciech Florkowski<sup>44</sup>, Yuki Fuj Alexandra Gade<sup>3,6</sup>, Tetyana Galatyuk<sup>14,46</sup>, Charles Gale<sup>42</sup>, F Kris Hagel<sup>10</sup>, Steven P. Harris<sup>1</sup>, Wick Haxton<sup>40,50</sup>, Ulrich He Heiko Hergert<sup>3,6</sup>, Norbert Herrmann<sup>53</sup>, Huan Zhong Hua

Natsumi Ikeno<sup>10,58</sup>, Gabriele Inghirami<sup>14</sup>, Jakub Jankowski, Jakub Jakub Jankowski, Jakub Jankowski, Jakub Jakub Jankowski, José C. Jiménez<sup>61</sup>, Joseph Kapusta<sup>62</sup>, Behruz Kardan<sup>31</sup>, Iurii Karpenko<sup>63</sup>, Declan Keane<sup>39</sup>, Dmitri Kharzeev<sup>60,64</sup>, Andrej Kugler<sup>65</sup>, Arnaud Le Fèvre<sup>14</sup>, Dean Lee<sup>3,6</sup>, Hong Liu<sup>66</sup>, Michael A. Lisa<sup>45</sup>, William J. Llope<sup>67</sup>, Ivano Lombardo<sup>68</sup>, Manuel Lorenz<sup>31</sup>, Tommaso Marchi<sup>69</sup> Larry McLerran<sup>1</sup>, Ulrich Mosel<sup>70</sup>, Anton Motornenko<sup>21</sup>, Berndt Müller<sup>23</sup>, Paolo Napolitani<sup>71</sup> Joseph B. Natowitz<sup>10</sup>, Witold Nazarewicz<sup>3,6</sup>, Jorge Noronha<sup>72</sup>, Jacquelyn Noronha-Hostler<sup>72</sup> Grażyna Odyniec<sup>40</sup>, Panagiota Papakonstantinou<sup>73</sup>, Zuzana Paulínyová<sup>74</sup>, Jorge Piekarewicz<sup>75</sup>, Robert D. Pisarski<sup>60</sup>, Christopher Plumberg<sup>76</sup>, Madappa Prakash<sup>7</sup>, Jørgen Randrup<sup>40</sup>, Claudia Ratti<sup>77</sup>, Peter Rau<sup>1</sup>, Sanjay Reddy<sup>1</sup>, Hans-Rudolf Schmidt<sup>2,14</sup>, Paolo Russotto<sup>37</sup>, Radoslaw Ryblewski<sup>78</sup>, Andreas Schäfer<sup>79</sup>, Björn Schenke<sup>60</sup>, Srimoyee Sen<sup>80</sup>, Peter Senger<sup>81</sup>, Richard Seto<sup>82</sup>, Chun Shen<sup>67,83</sup>, Bradley Sherrill<sup>3,6</sup>, Mayank Singh<sup>62</sup>, Vladimir Skokov<sup>83,84</sup>, Michał Spaliński<sup>85,86</sup>, Jan Steinheimer<sup>21</sup>, Mikhail Stephanov<sup>87</sup>, Joachim Stroth<sup>14,31</sup>, Christian Sturm<sup>14</sup>, Kai-Jia Sun<sup>88</sup>, Aihong Tang<sup>60</sup>, Giorgio Torrieri<sup>89,90</sup>, Wolfgang Trautmann<sup>14</sup>, Giuseppe Verde<sup>91</sup>, Volodymyr Vovchenko<sup>77</sup>, Ryoichi Wada<sup>10</sup>, Fuqiang Wang<sup>92</sup>, Gang Wang<sup>54</sup>, Klaus Werner<sup>20</sup>, Nu Xu<sup>40</sup>, Zhangbu Xu<sup>60</sup>, Ho-Ung Yee<sup>87</sup>, Sherry Yennello<sup>9,10,93</sup>, Yi Yin<sup>94</sup>

2023 Feb 25 [nucl-th] 3253v2 Xiv:230

Agnieszka Sorensen





# Outcomes of the "Seattle" White Paper and the "PR campaign"

The U.S. 2023 Long Range Plan hasn't been released yet = no certainty of impact, but...

- after a failure in the first vote, Survey: Yes 92 / No 113 / No Answer passed the second vote 50 at the Hot & Cold QCD town hall meeting make connections to astrophysics)
- in the Hot & Cold QCD and Nuclear Structure, Reactions, and Astrophysics white papers

The Present and Future of QCD

QCD Town Meeting White Paper – An Input to the 2023 NSAC Long Range Plan

P. Achenbach<sup>1</sup>, D. Adhikari<sup>2</sup>, A. Afanasev<sup>3</sup>, F. Afzal<sup>4</sup>, C.A. Aidala<sup>5</sup>, A. Al-bataineh<sup>6,7</sup>, D.K. Almaalol<sup>8</sup>, M. Amaryan<sup>9</sup>, D. Androić<sup>10</sup>, W.R. Armstrong<sup>11</sup>, M. Arratia<sup>12,1</sup>, J. Arrington<sup>13</sup>, A. Asaturyan<sup>14,15</sup>, E.C. Aschenauer<sup>16</sup>, H. Atac<sup>17</sup>,

• Section of an upcoming white paper on "Motivations for Early High-Profile FRIB Experiments" devoted to the high-density EOS extraction from HICs, transport simulations,  $\chi$ EFT, ...

Agnieszka Sorensen

• Initiative for "[exploring] US participation in international facilities at the high baryon density" (=CBM)

(Yes: 157; No: 129; No Answer: 56)

(the wording @ 1st vote implied RHIC BES wouldn't succeed; differences @ 2nd vote: make the case without implying that RHIC BES had failed, advocate for building on their results and further progress,

• Multiple significant mentions of hadronic transport, the EOS at high baryon density, and TMEP



WHITE PAPER ON NUCLEAR STRUCTURE, REACTIONS, AND **A**STROPHYSICS









# What is needed to support HIC research

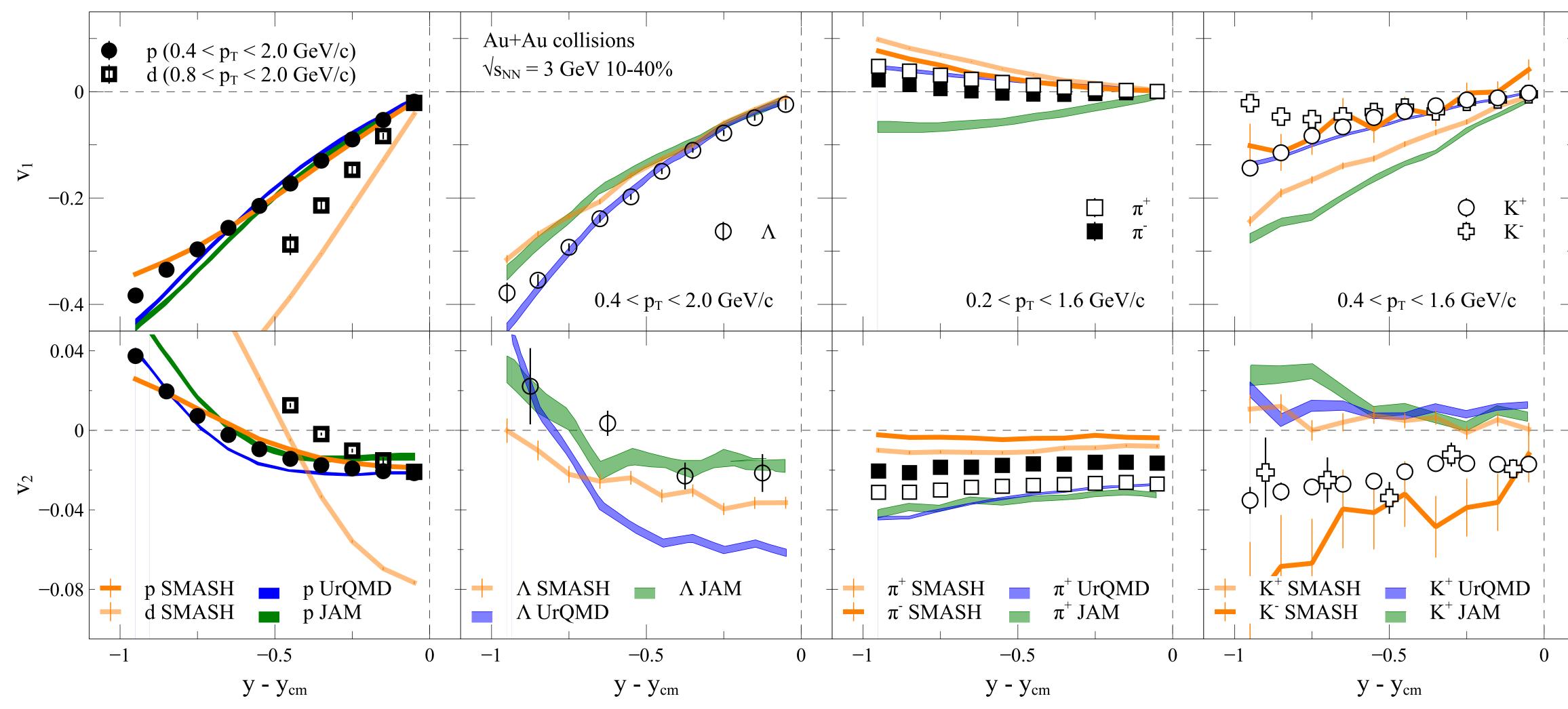
- Funding for experiment
  - Good news:
  - continued support for HADES
  - continued development of FAIR/CBM
  - support for EOS @ FRIB experiments
  - other experiments: INDRA-FAZIA, RAON, CEE,...
- Support for theory

  - complex projects to further develop these simulations *need* support for collaborations

### to support the upper two points:

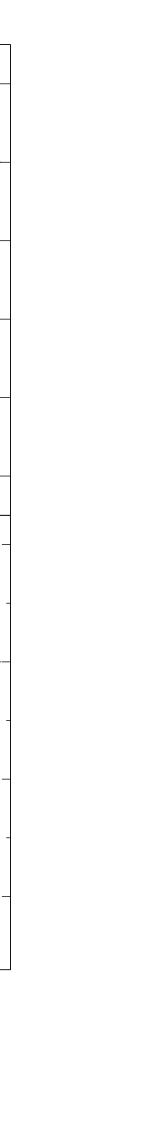
- - exchange of ideas
  - finding common goals
  - influx of talent

- ...


- realizing the potential of HIC experiments *needs* interpretations of data from transport simulations - long-term developments *need* the existence of viable career paths for early career researchers

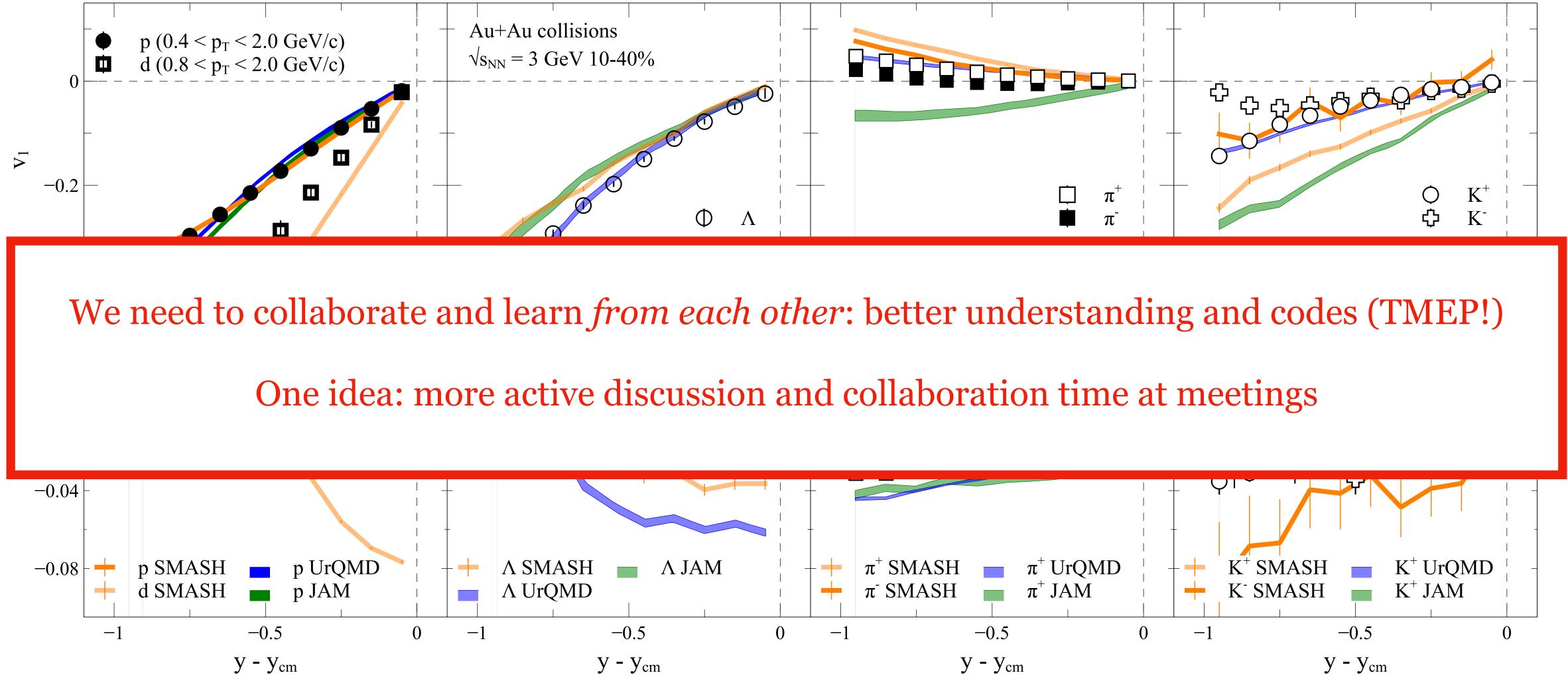
• Engagement with other nuclear physics communities = not only increased visibility (PR), but also:






## And back to science: What do we need to do to describe all flows?




STAR, Phys. Lett. B **827**, 137003 (2022) arXiv:2108.00908 D. Oliinychenko, **A. Sorensen**, V. Koch, L. McLerran, Phys. Rev. C **108**, 3, 034908 (2023), arXiv:2208.11996 **A. Sorensen** *et al.*, arXiv:2301.13253, to appear in JPPNP

Agnieszka Sorensen





## And back to science: *What* do we need to do to describe all flows?



STAR, Phys. Lett. B 827, 137003 (2022) arXiv:2108.00908 D. Oliinychenko, A. Sorensen, V. Koch, L. McLerran, Phys. Rev. C 108, 3, 034908 (2023), arXiv:2208.11996 **A. Sorensen** et al., arXiv:2301.13253, to appear in JPPNP

Agnieszka Sorensen

