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Coulomb excitation of neutron-rich 
nuclei in EOS study

● Fast projectile at relativistic energies excited in a Lorentz-contracted                             
Coulomb field of a high Z-target

● Probing the electric dipole response (E1) of nuclei

GDR – oscillation of protons against neutrons

PDR – oscillation of neutron skin against isospin symmetric core 

● Isospin sensitivity – access to the symmetry energy of nuclear EOS  → slope parameter, L

● Electromagnetic probes – large cross sections due to the long range of the interaction, 
smaller uncertainties than for hadronic probes

● αD – dipole polarizability

● σC – new observable  [A.Horvat, PhD thesis, TUDa, 2019]
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Dipole polarizability αD

● Inverse-energy weighted sum rule (weighted electric dipole response function)

● Sensitivity to L – correlation with ∆rnp

● αD (∆rnp ) correlation coefficient : 0.62

● αDJ (∆rnp ) correlation coefficient : 0.97 [X. Roca-Maza, N.Paar, Prog.Part.Nucl.Phys. (2018) 101:96–176.]
[Roca-Maza et al., Phys.Rev.C (2013) 88:024316]
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● Full dipole response function of the nucleus needs to be measured

● Proton inelastic scattering at relativistic velocities at very forward angles  – for stable nuclei (40Ca, 48Ca,  
112-124Sn, 208Pb)

● Relativistic Coulomb excitation of projectile nucleus in inverse kinematics – for neutron-rich unstable 
nuclei (68Ni)

● Going away from the stability valley:

→ inverse kinematics, relativistic energies – forward focusing of decay products

→ accurate excitation energy reconstruction becomes more challenging

Dipole polarizability αD - measurements
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γ - detection

40Ca [ R. Fearick et al., Phys. Rev. Res. 5 (2023) L022044 
(2023)]
48Ca [J. Birkhan et al., Phys. Rev. Lett. 118 (2017) 252501]
112-124Sn [S. Bassauer et al., Phys. Lett. B 810 (2020) 135804]
208Pb [A. Tamii et al., Phys. Rev. Lett. 107 (2011) 062505]
68Ni [D.M.Rossi et al., Phys. Rev. Lett. 111 (2013) 242503]
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New observable – total Coulomb excitation cross section, σC

132Sn at 1 GeV/u
[A.Horvat, PhD thesis, TUDa, 2019]

● Correlation of σC with αD at relativistic energies → sensitivity 
of σC to L

● Where does correlation come from? Virtual photon method 
calculation: 

● πλ = E1 – at relativistic energies NE1 follows ≈1/ε functional 
dependence - as αD
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Correlation of σC to L
● (Q)RPA calculations using different relativistic and nonrelativistic EDFs – B(E1) values

● σC  calculation via virtual-photon method [C.Bertulani, G.Baur, Phys.Rep., 163 (1988) 229]

● σC is easier to measure – doesn’t require reconstruction of full excitation energy spectrum

[A. Horvat, private communication]
Ivana Lihtar, RBI, Croatia
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First experiment exploring σC at GSI - S412

● R3B@GSI, Darmstadt 2012

● R3B-LAND setup

● Evolution of dipole response in 124-132Sn by 
measuring σC  (in field of 208Pb target)

● Beam energies ≈ 510-580 MeV/u

● Estimation of contribution below 1n threshold 
from [P. Schrock., PhD thesis, TUDa, 2015.]

● Softer L values preferred

● Publication in preparation!

[A.Horvat, PhD thesis, TUDa, 2019]
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Follow-up experiment - S515

● Further investigation of Sn isotopes; mass range 124-134
● R3B@GSI, FairPhase0 campaign, 2021
● σC measurement (predicted accuracy 5%) 
● Accurate measurement of σΔN (+/- 10 MeV constraint on L)

● UNILAC, SIS18 – primary beam 136Xe, 238U
● FRS – secondary cocktail beam: 124-134Sn (fragmentation and 

fission process using “Bρ-ΔE-Bρ” method) on Be and Pb 
production targets 

● Beam energies  ≈  680-900 MeV/u
● Secondary beam intensity ≈ 3∙104 pps
● R3B-NeuLAND setup
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S515 experiment 
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● Detection of incoming beam and reaction products
● Beam energies  ≈  680-900 MeV/u
● Targets: 208Pb (980 mg/cm2) , 12C (1 g/cm2, 2 g/cm2)
● σC measurement above 1n separation threshold

Beam received 
from FRS.
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Incoming beam identification124Sn

128,130,132Sn

● Bρ – position measured in the second focal plane S2 
of FRS

● ToF – measured between S2 and LOS → β

● ELoss – measured with X5 sillicon det. → Z

● β-correction for charge

● Charge resolution σZ/Z ≈ 0.7 %

● A/Q resolution σA/Q/A/Q ≈ 0.07%

Bρ=Bρ0(1−
Δ x S2

D S2
)

A
Q

=
Bρ

3.107βγ
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Outgoing fragment identification
● Z-measurement  (ionization chamber R3BMusic)

● Z resolution σZ/Z ≈ 0.28 %

● Mass – tracking of fragments after reaction on 
target through GLAD magnet

● “multi-dimensional fit” method (V. Panin)

● A resolution σA/A ≈ 0.2%

Ivana Lihtar, RBI, Croatia

124Sn incoming cut + neutron ToF 
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Neutron detection
● NeuLAND detector – ToF, ELoss, position measurement 
● Modular design – organic scintillator bars arranged in double 

planes
● 12 double planes present at the time of the experiment
● Current ToF resolution reached σ ≈ 230 ps 
● 1n efficiency ≈ 80%

Double plane:
1st plane →  50 horizontaly oriented bars
2nd plane →  50 vertically oriented bars

Ivana Lihtar, RBI, Croatia
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Neutron detection
● multi-neutron recognition 

● IDEA: clustering detected hits, sorting them and attributing to neutrons

● few algorithms developed for NeuLAND detector 

● main algorithm: calorimetric method (Number of clusters vs Total energy deposition)                                           
– BUT works best for full detector (30 DP)

600 MeV neutrons, 30DP, multiplicity up to 4 
[K.Boretzky et al., Nucl. Instrum. Methods Phys. Res. A 1014 (2021) 165701]
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● For 12 DP large overlap in the 2D plot for 1/2/3/4 neutrons

● Shift in average number of clusters and ELoss visible for increasing neutron number

● Work in progress 
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Coulomb excitation cross section

σC=
M (Pb)
d (Pb)N A

[ p(Pb)−p (empty )]−α(Pb ,C )
M (C)

d (C )N A

[ p (C)−p(empty )]
● correlation of neutron ToF with fragments – allows 

for the evaluation of 1n cross section

● Efficiency and acceptance from GEANT4 
simulations

● background contribution subtracted with the 
“empty target” run

● nuclear contribution subtracted with the carbon 
target run – scaled up for the lead target (currently 
using semi-empirical model)

M(x) – molar mass of the nucleus x

d(x) – target thickness (nucleus x)

p(x) – reaction probability 

α (Pb, C) – scaling factor

α(Pb ,C )=
1+aA(Pb)1 /3

1+aA (C )
1/ 3

,    a=0.14+-0.01

Ivana Lihtar, RBI, Croatia
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Preliminary 1n-decay channel results

● Mean field calculations of nuclear ground state densities
● (Q)RPA calculations of electromagnetic response (B(E1), B(E2) values) using non-relativistic and 

relativistic energy density functionals
● cross sections calculated via virtual-photon method and Coulomb coupled-channel method
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* All theoretical calculations are performed by C. Bertulani and A.Ravlić.
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Additional contributions to cross sections
● Quadrupole contribution (ISGQR, IVGQR)

● Double GDR contribution 

● Contribution from nuclear processes – further refinement of subtraction from σC

• 124Sn, Pb target, 904 AMeV, DD-PCX   
• coupled channel calculation
• quadrupole contribution calculated 
from global experiment systematics of 
GQR:

E1 : 88 % σC 

ISGQR : 5 % σC 

IVGQR : 3.5 % σC 

DGDR : 3.5 % σC 

Ivana Lihtar, RBI, Croatia
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Challenges

● Neutron rich nuclei are interesting because of larger isospin asymmetry

● Challenges:

● multi-neutron recognition

● measurements below neutron separation threshold for neutron rich nuclei

→ good coverage of forward angles with gamma detector 

→ hasn’t been done so far: accounting for gammas coming from target excitations

Ivana Lihtar, RBI, Croatia
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Thank you for your attention!
&
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for the R3B Collaboration
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