NuSym 2023 XIth International Symposium on Nuclear Symmetry Energy GSI Darmstadt, Germany

Constraining the nuclear equation of state using Coulomb excitation of neutron-rich Sn isotopes

Ivana Lihtar, ilihtar@irb.hr Ruđer Bošković Institute Zagreb, Croatia

Coulomb excitation of neutron-rich nuclei in EOS study

- Fast projectile at relativistic energies excited in a Lorentz-contracted Coulomb field of a high Z-target
- Probing the electric dipole response (E1) of nuclei
 - GDR oscillation of protons against neutrons
 - PDR oscillation of neutron skin against isospin symmetric core
- Isospin sensitivity access to the symmetry energy of nuclear EOS \rightarrow slope parameter, L
- Electromagnetic probes large cross sections due to the long range of the interaction, smaller uncertainties than for hadronic probes
- $\alpha_{\rm D}$ dipole polarizability
- $\sigma_{\rm C}$ new observable [A.Horvat, PhD thesis, TUDa, 2019]

Dipole polarizability α_{D}

• Inverse-energy weighted sum rule (weighted electric dipole response function)

$$\alpha_D = \frac{8\pi}{9} \int \frac{B(E1)}{\epsilon} d\epsilon$$

- Sensitivity to L correlation with Δr_{np}
- $\alpha_{\rm D}$ ($\Delta r_{\rm np}$) correlation coefficient : 0.62
- $\alpha_{\rm D} J (\Delta r_{\rm np})$ correlation coefficient : 0.97

[X. Roca-Maza, N.Paar, Prog.Part.Nucl.Phys. (2018) 101:96–176.] [Roca-Maza et al., Phys.Rev.C (2013) 88:024316]

Dipole polarizability α_D - measurements

- Full dipole response function of the nucleus needs to be measured
- Proton inelastic scattering at relativistic velocities at very forward angles for stable nuclei (40Ca, 48Ca, 112-124Sn, 208Pb)
- Relativistic Coulomb excitation of projectile nucleus in inverse kinematics for neutron-rich unstable nuclei (68Ni)
- Going away from the stability valley:
 - → inverse kinematics, relativistic energies forward focusing of decay products
 - → accurate excitation energy reconstruction becomes more challenging


```
<sup>40</sup>Ca [ R. Fearick et al., Phys. Rev. Res. 5 (2023) L022044 (2023)]
```

⁴⁸Ca [J. Birkhan et al., Phys. Rev. Lett. 118 (2017) 252501]

¹¹²⁻¹²⁴Sn [S. Bassauer et al., Phys. Lett. B 810 (2020) 135804]

²⁰⁸Dh [A. Tarrii et al. Phys. Rev. Lett. 107 (2011) 062505]

²⁰⁸Pb [A. Tamii et al., Phys. Rev. Lett. 107 (2011) 062505]

⁶⁸Ni [D.M.Rossi et al., Phys. Rev. Lett. 111 (2013) 242503]

New observable – total Coulomb excitation cross section, σ_{C}

- Correlation of σ_C with α_D at relativistic energies \rightarrow sensitivity of σ_C to L
- Where does correlation come from? Virtual photon method calculation:

$$\sigma_{C}^{\pi\lambda} = \int N^{\pi\lambda}(\epsilon) \frac{d\epsilon}{\epsilon} \sigma_{\gamma}^{\pi\lambda}(\epsilon)$$

$$N_{\pi\lambda}(\epsilon) = Z^{2} \alpha \frac{\lambda [(2\lambda+1)!!]^{2}}{(2\pi)^{3}(\lambda+1)} \sum_{m} g_{m}(\xi) |G_{\pi\lambda m}(c/v)^{2}|$$

$$\sigma_{\gamma}^{\pi\lambda} = e^{2} \frac{(2\pi)^{3}(\lambda+1)}{\lambda [(2\lambda+1)!!]^{2}} \sum_{f} \rho_{f}(\epsilon) \left(\frac{\epsilon}{\hbar c}\right)^{2\lambda-1} B_{i\to f}^{\pi\lambda}(\epsilon)$$

$$\alpha_{D} = \frac{\hbar c}{2\pi^{2}} \int \frac{\sigma_{\gamma}^{E1}}{\epsilon^{2}} d\epsilon = \frac{8\pi}{9} \int \frac{B(E1)}{\epsilon} d\epsilon$$

• $\pi\lambda$ = E1 – at relativistic energies N_{E1} follows $\approx 1/\epsilon$ functional dependence – as α_D

¹³²Sn at 1 GeV/u [A.Horvat, PhD thesis, TUDa, 2019]

Correlation of σ_C to L

- (Q)RPA calculations using different relativistic and nonrelativistic EDFs B(E1) values
- σ_C calculation via virtual-photon method [C.Bertulani, G.Baur, Phys.Rep., 163 (1988) 229]
- $\sigma_{\rm C}$ is easier to measure doesn't require reconstruction of full excitation energy spectrum

First experiment exploring σ_{C} at GSI - S412

- R³B@GSI, Darmstadt 2012
- R³B-LAND setup
- Evolution of dipole response in $^{124-132}$ Sn by measuring σ_C (in field of 208 Pb target)
- Beam energies ≈ 510-580 MeV/u
- Estimation of contribution below 1n threshold from [P. Schrock., PhD thesis, TUDa, 2015.]
- Softer L values preferred
- Publication in preparation!

[A.Horvat, PhD thesis, TUDa, 2019]

Follow-up experiment - S515

- Further investigation of Sn isotopes; mass range 124-134
- R³B@GSI, FairPhase0 campaign, 2021
- $\sigma_{\rm C}$ measurement (predicted accuracy 5%)
- Accurate measurement of σ_{AN} (+/- 10 MeV constraint on L)
- UNILAC, SIS18 primary beam ¹³⁶Xe, ²³⁸U
- FRS secondary cocktail beam: $^{124-134}$ Sn (fragmentation and fission process using "Bp- Δ E-Bp" method) on Be and Pb production targets
- Beam energies ≈ 680-900 MeV/u
- Secondary beam intensity ≈ 3·10⁴ pps
- R³B-NeuLAND setup

S515 experiment

9

Targets: 208Pb (980 mg/cm2), 12C (1 g/cm², 2 g/cm²)

 $\sigma_{\rm C}$ measurement above 1n separation threshold

Incoming beam identification

 Bρ – position measured in the second focal plane S2 of FRS

$$B\rho = B\rho_0 \left(1 - \frac{\Delta x_{S2}}{D_{S2}} \right)$$

• ToF – measured between S2 and LOS $\rightarrow \beta$

$$\frac{A}{Q} = \frac{B\rho}{3.107\,\beta\gamma}$$

- ELoss measured with X5 sillicon det. \rightarrow Z
- β-correction for charge
- Charge resolution $\sigma_z/Z \approx 0.7 \%$
- A/Q resolution $\sigma_{A/Q}/A/Q \approx 0.07\%$

Outgoing fragment identification

- Z-measurement (ionization chamber R3BMusic)
- Z resolution $\sigma_z/Z \approx 0.28 \%$
- Mass tracking of fragments after reaction on target through GLAD magnet

- "multi-dimensional fit" method (V. Panin)
- A resolution $\sigma_A/A \approx 0.2\%$

Neutron detection

- NeuLAND detector ToF, ELoss, position measurement
- Modular design organic scintillator bars arranged in double planes
- 12 double planes present at the time of the experiment
- Current ToF resolution reached $\sigma \approx 230 \text{ ps}$
- 1n efficiency $\approx 80\%$

Double plane: 1^{st} plane $\rightarrow 50$ horizontaly oriented bars 2^{nd} plane $\rightarrow 50$ vertically oriented bars

Neutron detection

- multi-neutron recognition
- IDEA: clustering detected hits, sorting them and attributing to neutrons
- few algorithms developed for NeuLAND detector
- main algorithm: calorimetric method (Number of clusters vs Total energy deposition)
 <u>BUT</u> works best for full detector (30 DP)

600 MeV neutrons, 30DP, multiplicity up to 4 [K.Boretzky et al., Nucl. Instrum. Methods Phys. Res. A 1014 (2021) 165701]

- For 12 DP large overlap in the 2D plot for 1/2/3/4 neutrons
- Shift in average number of clusters and ELoss visible for increasing neutron number
- Work in progress

Coulomb excitation cross section

- correlation of neutron ToF with fragments allows for the evaluation of 1n cross section
- Efficiency and acceptance from GEANT4 simulations
- background contribution subtracted with the "empty target" run
- nuclear contribution subtracted with the carbon target run – scaled up for the lead target (currently using semi-empirical model)

$$\alpha(Pb,C) = \frac{1+aA(Pb)^{1/3}}{1+aA(C)^{1/3}}$$
, $a=0.14+-0.01$

$$\sigma_{C} = \frac{M(Pb)}{d(Pb)N_{A}}[p(Pb) - p(empty)] - \alpha(Pb,C)\frac{M(C)}{d(C)N_{A}}[p(C) - p(empty)]$$

M(x) – molar mass of the nucleus x

d(x) – target thickness (nucleus x)

p(x) – reaction probability

 α (Pb, C) – scaling factor

Preliminary 1n-decay channel results

Table 1. Coulomb excitation cross sections for ¹²⁴Sn at 904 AMeV. In the theoretical results only E1 excitations were taken into account.

EDF	σ [mb] – virtual phot	σ [mb] – coupled channel –				
DD-PCX	2302		2324			
Sly4	2499		2601			
Decay ch.	1n	21	1	3n	4n	
σ [mb] (S412)	1088 ± 75	374 ±	± 95	-	-	

*

- @514 AMeV PRELIMINARY!
 - Mean field calculations of nuclear ground state densities

 1280 ± 56

σ [mb] (S515)

- (Q)RPA calculations of electromagnetic response (B(E1), B(E2) values) using non-relativistic and relativistic energy density functionals
- cross sections calculated via virtual-photon method and Coulomb coupled-channel method

^{*} All theoretical calculations are performed by C. Bertulani and A.Ravlić.

Preliminary 1n-decay channel results

Table 1. Coulomb excitation cross sections for ¹²⁴Sn at 904 AMeV. In the theoretical results only E1 excitations were taken into account.

EDF	σ [mb] – virtual photon –		σ [mb] – coupled channel –		
DD-PCX	2302		2324		
Sly4	2499		2601		
Decay ch.	1n	$2n$ 374 ± 95		3n	4n
σ [mb] (S412)	1088 ± 75			-	-
σ [mb] (S515)	1280 ± 56	*		*	*

- @514 AMeV PRELIMINARY!
 - Mean field calculations of nuclear ground state densities
 - (Q)RPA calculations of electromagnetic response (B(E1), B(E2) values) using non-relativistic and relativistic energy density functionals
 - cross sections calculated via virtual-photon method and Coulomb coupled-channel method

^{*} All theoretical calculations are performed by C. Bertulani and A.Ravlić.

Additional contributions to cross sections

- Quadrupole contribution (ISGQR, IVGQR)
- Double GDR contribution
- Contribution from nuclear processes further refinement of subtraction from σ_{C}

- ¹²⁴Sn, Pb target, 904 AMeV, DD-PCX
- coupled channel calculation
- quadrupole contribution calculated from global experiment systematics of GQR:

E1:88 % σ_{c}

ISGQR : 5 % σ_{C}

IVGQR : 3.5 % σ_{C}

DGDR : $3.5 \% \sigma_{C}$

Challenges

- Neutron rich nuclei are interesting because of larger isospin asymmetry
- <u>Challenges:</u>
- multi-neutron recognition
- measurements below neutron separation threshold for neutron rich nuclei
 - → good coverage of forward angles with gamma detector
 - → hasn't been done so far: accounting for gammas coming from target excitations

Thank you for your attention! &

Special thanks to my collaborators:

E. Kudaibergenova², M. Feijoo-Fontán³, I. Gašparić¹, A. Horvat¹, T. Aumann^{2,4}, D. Rossi^{2,4}, V. Panin⁴, J.L. Rodriguez-Sanchez^{3,5} and Hans Törnqvist⁶ for the R³B Collaboration

¹Ruđer Bošković Institute, Croatia

²TU Darmstadt, Germany

³IGFAE, Universidad de Santiago de Compostela, Spain

⁴GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany

⁵CITENI, Universidad de La Corũna, Spain

⁶Chalmers University, Sweden