NuSym 2023 XIth International Symposium on Nuclear Symmetry Energy GSI Darmstadt, Germany

# Constraining the nuclear equation of state using Coulomb excitation of neutron-rich Sn isotopes

Ivana Lihtar, ilihtar@irb.hr Ruđer Bošković Institute Zagreb, Croatia



# Coulomb excitation of neutron-rich nuclei in EOS study

- $\begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$
- Fast projectile at relativistic energies excited in a Lorentz-contracted Coulomb field of a high Z-target
- Probing the electric dipole response (E1) of nuclei

GDR - oscillation of protons against neutrons

PDR - oscillation of neutron skin against isospin symmetric core

- Isospin sensitivity access to the symmetry energy of nuclear EOS  $\rightarrow$  slope parameter, *L*
- Electromagnetic probes large cross sections due to the long range of the interaction, smaller uncertainties than for hadronic probes
- $\alpha_D$  dipole polarizability
- $\sigma_{c}$  new observable [A.Horvat, PhD thesis, TUDa, 2019]

## Dipole polarizability $\alpha_{_D}$

- Inverse-energy weighted sum rule (weighted electric dipole response function)
- Sensitivity to L correlation with  $\Delta r_{np}$
- $\alpha_{\rm D} (\Delta r_{\rm np})$  correlation coefficient : 0.62
- $\alpha_{\rm D} J (\Delta r_{\rm np})$  correlation coefficient : 0.97

[X. Roca-Maza, N.Paar, Prog.Part.Nucl.Phys. (2018) 101:96–176.] [Roca-Maza et al., Phys.Rev.C (2013) 88:024316]

 $\alpha_{\rm D} = \frac{8\,\pi}{\rm q} \int \frac{B(E\,1)}{\epsilon} d\,\epsilon$ 



## Dipole polarizability $\alpha_{D}$ - measurements

- Full dipole response function of the nucleus needs to be measured
- Proton inelastic scattering at relativistic velocities at very forward angles for stable nuclei (40Ca, 48Ca, <sup>112-124</sup>Sn, <sup>208</sup>Pb)
- Relativistic Coulomb excitation of projectile nucleus in inverse kinematics for neutron-rich unstable nuclei (68Ni)
- Going away from the stability valley:
  - $\rightarrow$  inverse kinematics, relativistic energies forward focusing of decay products
  - $\rightarrow$  accurate excitation energy reconstruction becomes more challenging



<sup>40</sup>Ca [ R. Fearick et al., Phys. Rev. Res. 5 (2023) L022044 (2023)]

<sup>48</sup>Ca [J. Birkhan et al., Phys. Rev. Lett. 118 (2017) 252501]
<sup>112-124</sup>Sn [S. Bassauer et al., Phys. Lett. B 810 (2020) 135804]
<sup>208</sup>Pb [A. Tamii et al., Phys. Rev. Lett. 107 (2011) 062505]
<sup>68</sup>Ni [D.M.Rossi et al., Phys. Rev. Lett. 111 (2013) 242503]

## <u>New observable</u> – total Coulomb excitation cross section, $\sigma_{c}$

- Correlation of  $\sigma_C$  with  $\alpha_D$  at relativistic energies sensitivity of  $\sigma_C$  to L
- Where does correlation come from? Virtual photon method calculation:

$$\sigma_{C}^{\pi\lambda} = \int N^{\pi\lambda}(\epsilon) \frac{d \epsilon}{\epsilon} \sigma_{\gamma}^{\pi\lambda}(\epsilon)$$

$$N_{\pi\lambda}(\epsilon) = Z^{2} \alpha \frac{\lambda [(2\lambda+1)!!]^{2}}{(2\pi)^{3}(\lambda+1)} \sum_{m} g_{m}(\xi) |G_{\pi\lambda m}(c/\nu)^{2}|$$
  
$$\sigma_{\gamma}^{\pi\lambda} = e^{2} \frac{(2\pi)^{3}(\lambda+1)}{\lambda [(2\lambda+1)!!]^{2}} \sum_{f} \rho_{f}(\epsilon) \left(\frac{\epsilon}{\hbar c}\right)^{2\lambda-1} B_{i \to f}^{\pi\lambda}(\epsilon)$$

$$\alpha_{D} = \frac{\hbar c}{2 \pi^{2}} \int \frac{O_{\gamma}^{E1}}{\epsilon^{2}} d\epsilon = \frac{8 \pi}{9} \int \frac{B(E1)}{\epsilon} d\epsilon$$

•  $\pi\lambda = E1 - at$  relativistic energies  $N_{E1}$  follows  $\approx 1/\epsilon$  functional dependence - as  $\alpha_D$ 



<sup>132</sup>Sn at 1 GeV/u [A.Horvat, PhD thesis, TUDa, 2019]

# Correlation of $\sigma_{c}$ to L

- (Q)RPA calculations using different relativistic and nonrelativistic EDFs B(E1) values
- $\sigma_{\rm C}$  calculation via virtual-photon method [C.Bertulani, G.Baur, Phys.Rep., 163 (1988) 229]
- $\sigma_{\rm C}$  is easier to measure doesn't require reconstruction of full excitation energy spectrum



## First experiment exploring $\sigma_{c}$ at GSI - S412

- R<sup>3</sup>B@GSI, Darmstadt 2012
- R<sup>3</sup>B-LAND setup
- Evolution of dipole response in  $^{124-132}Sn$  by measuring  $\sigma_{\rm C}\,$  (in field of  $^{208}Pb$  target)
- Beam energies  $\approx$  510-580 MeV/u
- Estimation of contribution below 1n threshold from [P. Schrock., PhD thesis, TUDa, 2015.]
- Softer L values preferred
- Publication in preparation!



[A.Horvat, PhD thesis, TUDa, 2019]

# Follow-up experiment - S515

- Further investigation of Sn isotopes; mass range 124-134
- R<sup>3</sup>B@GSI, FairPhase0 campaign, 2021
- $\sigma_{\rm C}$  measurement (predicted accuracy 5%)
- Accurate measurement of  $\sigma_{\Delta N}$  (+/- 10 MeV constraint on L)
- UNILAC, SIS18 primary beam <sup>136</sup>Xe, <sup>238</sup>U
- FRS secondary cocktail beam:  $^{124-134}$ Sn (fragmentation and fission process using "Bp- $\Delta$ E-Bp" method) on Be and Pb production targets
- Beam energies ≈ 680-900 MeV/u
- Secondary beam intensity  $\approx 3.10^4 \text{ pps}$
- R<sup>3</sup>B-NeuLAND setup



# S515 experiment



- Beam energies  $\approx$  680-900 MeV/u
- Targets: <sup>208</sup>Pb (980 mg/cm2) , <sup>12</sup>C (1 g/cm<sup>2</sup>, 2 g/cm<sup>2</sup>)
- $\sigma_{c}$  measurement above 1n separation threshold





# Incoming beam identification

Bρ – position measured in the second focal plane S2 of FRS

$$B\rho = B\rho_0 \left( 1 - \frac{\Delta x_{S2}}{D_{S2}} \right)$$

• ToF – measured between S2 and LOS  $\rightarrow \beta$ 

$$\frac{A}{Q} = \frac{B\rho}{3.107\,\beta\,\gamma}$$

- ELoss measured with X5 sillicon det.  $\rightarrow$  Z
- β-correction for charge
- Charge resolution  $\sigma_Z/Z \approx 0.7 \%$
- A/Q resolution  $\sigma_{A/Q}/A/Q \approx 0.07\%$



# Outgoing fragment identification

- Z-measurement (ionization chamber R3BMusic)
- Z resolution  $\sigma_Z/Z \approx 0.28 \%$
- Mass tracking of fragments after reaction on target through GLAD magnet



- "multi-dimensional fit" method (V. Panin)
- A resolution  $\sigma_A/A \approx 0.2\%$

## Neutron detection

- NeuLAND detector ToF, ELoss, position measurement
- Modular design organic scintillator bars arranged in double planes
- 12 double planes present at the time of the experiment
- Current ToF resolution reached  $\sigma \approx 230 \text{ ps}$
- 1n efficiency  $\approx 80\%$







Double plane:  $1^{st}$  plane  $\rightarrow 50$  horizontaly oriented bars  $2^{nd}$  plane  $\rightarrow 50$  vertically oriented bars

#### Neutron detection

- multi-neutron recognition
- IDEA: clustering detected hits, sorting them and attributing to neutrons
- few algorithms developed for NeuLAND detector
- main algorithm: calorimetric method (Number of clusters vs Total energy deposition)
   <u>BUT</u> works best for full detector (30 DP)



Ivana Lihtar, RBI, Croatia

- For 12 DP large overlap in the 2D plot for 1/2/3/4 neutrons
- Shift in average number of clusters and ELoss visible for increasing neutron number
- Work in progress





#### Coulomb excitation cross section

- correlation of neutron ToF with fragments allows for the evaluation of 1n cross section
- Efficiency and acceptance from GEANT4 simulations
- background contribution subtracted with the "empty target" run
- nuclear contribution subtracted with the carbon target run – scaled up for the lead target (currently using semi-empirical model)

$$\alpha(Pb,C) = \frac{1 + aA(Pb)^{1/3}}{1 + aA(C)^{1/3}}$$
, a=0.14+-0.01

$$\sigma_{C} = \frac{M(Pb)}{d(Pb)N_{A}} [p(Pb) - p(empty)] - \alpha(Pb,C) \frac{M(C)}{d(C)N_{A}} [p(C) - p(empty)]$$

 $\begin{array}{c|c} M(x) - \mbox{molar mass of the nucleus } x & p(x) - \mbox{reaction probability} \\ d(x) - \mbox{target thickness (nucleus } x) & \alpha \mbox{ (Pb, C)} - \mbox{scaling factor} \end{array}$ 



### Preliminary 1n-decay channel results

|              | the theoretical results only E1 excitations were taken into account. |                          |                              |      |      |                               |  |  |
|--------------|----------------------------------------------------------------------|--------------------------|------------------------------|------|------|-------------------------------|--|--|
|              | EDF                                                                  | σ [mb]<br>– virtual phot | σ [mb]<br>– virtual photon – |      |      | σ [mb]<br>– coupled channel – |  |  |
|              | DD-PCX                                                               | 2302<br>2499             |                              |      | 2324 |                               |  |  |
|              | Sly4                                                                 |                          |                              | 2601 |      |                               |  |  |
|              | Decay ch.                                                            | 1n                       | 2n                           |      | 3n   | 4n                            |  |  |
| @514 AMeV    | σ [mb] (S412)                                                        | $1088\pm75$              | 374 ± 95<br>*                |      | -    | -                             |  |  |
| PRELIMINARY! | σ [mb] (S515)                                                        | $1280\pm56$              |                              |      | *    | *                             |  |  |

Table 1. Coulomb excitation cross sections for <sup>124</sup>Sn at 904 AMeV. In



- Mean field calculations of nuclear ground state densities
- (Q)RPA calculations of electromagnetic response (B(E1), B(E2) values) using non-relativistic and relativistic energy density functionals
- cross sections calculated via virtual-photon method and Coulomb coupled-channel method

\* All theoretical calculations are performed by C. Bertulani and A.Ravlić.

## Preliminary 1n-decay channel results

|              | EDF           | σ [mb]<br>– virtual phot | σ [mb]<br>– coupled channel – |  |      |    |  |
|--------------|---------------|--------------------------|-------------------------------|--|------|----|--|
|              | DD-PCX        | 2302                     | 2302<br>2499<br>1n 2n         |  | 2324 |    |  |
|              | Sly4          | 2499                     |                               |  | 2601 |    |  |
|              | Decay ch.     | 1n                       |                               |  | 3n   | 4n |  |
| @514 AMeV    | σ [mb] (S412) | $1088\pm75$              | $374\pm95$                    |  | -    | -  |  |
| PRELIMINARY! | σ [mb] (S515) | $1280\pm56$              | *                             |  | *    | *  |  |

Table 1. Coulomb excitation cross sections for <sup>124</sup>Sn at 904 AMeV. In

the theoretical results only E1 excitations were taken into account



- Mean field calculations of nuclear ground state densities
- (Q)RPA calculations of electromagnetic response (B(E1), B(E2) values) using non-relativistic and relativistic energy density functionals
- cross sections calculated via virtual-photon method and Coulomb coupled-channel method

\* All theoretical calculations are performed by C. Bertulani and A.Ravlić.

## Additional contributions to cross sections

- Quadrupole contribution (ISGQR, IVGQR)
- Double GDR contribution
- Contribution from nuclear processes further refinement of subtraction from  $\sigma_{c}$



- <sup>124</sup>Sn, Pb target, 904 AMeV, DD-PCX
- coupled channel calculation
- quadrupole contribution calculated from global experiment systematics of GQR:

E1 : 88 %  $\sigma_{c}$ ISGQR : 5 %  $\sigma_{c}$ IVGQR : 3.5 %  $\sigma_{c}$ DGDR : 3.5 %  $\sigma_{c}$ 

# Challenges

- Neutron rich nuclei are interesting because of larger isospin asymmetry
- <u>Challenges</u>:
- multi-neutron recognition
- measurements below neutron separation threshold for neutron rich nuclei
  - $\rightarrow$  good coverage of forward angles with gamma detector
  - $\rightarrow$  hasn't been done so far: accounting for gammas coming from target excitations

#### Thank you for your attention! & Special thanks to my collaborators:

E. Kudaibergenova<sup>2</sup>, M. Feijoo-Fontán<sup>3</sup>, I. Gašparić<sup>1</sup>, A. Horvat<sup>1</sup>, T. Aumann<sup>2,4</sup>, D. Rossi<sup>2,4</sup>, V. Panin<sup>4</sup>, J.L. Rodriguez-Sanchez<sup>3,5</sup> and Hans Törnqvist<sup>6</sup> for the R<sup>3</sup>B Collaboration

<sup>1</sup>Ruđer Bošković Institute, Croatia
<sup>2</sup>TU Darmstadt, Germany
<sup>3</sup>IGFAE, Universidad de Santiago de Compostela, Spain
<sup>4</sup>GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany
<sup>5</sup>CITENI, Universidad de La Corũna, Spain
<sup>6</sup>Chalmers University, Sweden