Systematics of the dipole polarizability

Collaboration:

NuSym 23

P. von Neumann-Cosel, G. Colò, T. Klaus, H. Matsubara, N. Pietralla, P.-G. Reinhard, X. Roca-Maza, A.Tamii

Supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Project-ID 279384907 - SFB 1245.

Dipole polarizability

$$lpha_{
m D}=rac{\hbar c}{2\pi^2}\intrac{\sigma_{
m abs}^{
m E1}}{E^2}{
m d}E$$

- Correlated to:
 - Neutron skin thickness
 - Symmetry energy

$$E(\rho, \delta) = E(\rho) + S(\rho)\delta^{2} + \mathcal{O}(\delta^{4})$$
$$S(\rho) = J + \frac{(\rho - \rho_{0})}{3\rho_{0}}L + \mathcal{O}((\rho - \rho_{0})^{2})$$

X. Roca-Maza et al., Phys. Rev. C88, 024316 (2013)

Dipole strength distribution

- Inelastic proton scattering at
 - Scattering angles close to 0°
 - $\,\triangleright\,$ Proton energies of $\approx 300\,MeV$
- Kinematics favours excitation of
 - Electric dipole transitions
 - Isovector-spinflip M1 transitions

Dipole strength distribution

- Inelastic proton scattering at
 - $\,\triangleright\,$ Scattering angles close to 0°
 - $\,\triangleright\,$ Proton energies of $\approx 300\,MeV$
- Kinematics favours excitation of
 - Electric dipole transitions
 - Isovector-spinflip M1 transitions
- Consistent measurement below and above the particle separation threshold

Research Center for Nuclear Physics (RCNP)

Experiment at the Grand Raiden spectrometer

- Proton beam with $E_p = 295 \, \text{MeV}$
- Measurement performed with the Grand Raiden magnetic spectrometer
- ► Experiment on ⁵⁸Ni:
 - Spectrometer angles: 0°, 2.5°, and 4.5°
 - Solid angle cuts: Spectra for scattering angles between 0.4° and 5.15°
 - Raw data analysis: H. Matsubara
- A. Tamii et al., Nucl. Instr. Meth A 605, 236 (2009)

Experiment at the Grand Raiden spectrometer

- Proton beam with $E_p = 295 \text{ MeV}$
- Measurement performed with the Grand Raiden magnetic spectrometer
- ► Experiment on ⁵⁸Ni:
 - Spectrometer angles: 0°, 2.5°, and 4.5°
 - Solid angle cuts: Spectra for scattering angles between 0.4° and 5.15°
 - Raw data analysis: H. Matsubara
- A. Tamii et al., Nucl. Instr. Meth A 605, 236 (2009)

⁵⁸Ni Spectra

Multipole decomposition analysis

- Multipole decomposition based on DWBA angular distributions
 V. Yu. Ponomarev (2019)
- Below 13 MeV: isovector spin-flip M1 resonance
- Phenomenological background from quasi-free scattering
 S. Bassauer et al., Phys. Rev. C 102, 034327 (2020)

Results for ⁵⁸Ni

Results for ⁵⁸Ni

Dipole polarizability ⁴⁰Ca

- High energy tail: Total photoabsorption on ^{nat}Ca
- Coupled Cluster calculations including triples (3p-3h) correlations
- Polarizability of ^{40,48}Ca can be calculated simultaneously with EDF and CC

R. Fearick et al., Phys. Rev. Res. 5, L022044 (2023)

Dipole polarizability ⁴⁰Ca

- High energy tail: Total photoabsorption on ^{nat}Ca
- Coupled Cluster calculations including triples (3p-3h) correlations
- Polarizability of ^{40,48}Ca can be calculated simultaneously with EDF and CC

R. Fearick et al., Phys. Rev. Res. 5, L022044 (2023)

Systematics of the dipole polarizability

Comparison to Migdal model

 Hydrodynamic model with interpenetraiting proton and neutron fluids

 $lpha_D = rac{e^2 R^2 A}{40 \cdot a_{
m sym}} \propto A^{5/3} \, {
m fm}^3$

- a_{sym}: Symmetry energy parameter in the Bethe-Weizsäcker mass formula
- ► S.Dietrich and B.Bermann, At. Data Nucl. Data Tables 38, 199 (1988) $\alpha_D = 2.4 \times 10^{-3} \cdot A^{5/3} \text{ fm}^3$

Fit:
$$\alpha_D = 3.0(3) \times 10^{-3} \cdot A^{5/3} \, \text{fm}^3$$

Comparison to Migdal model

▶ Refined model: *a*_{sym} mass dependent

$$a_{\text{sym}}(A) = S_{\nu} \left(1 - \frac{\kappa}{A^{1/3}}\right), \quad \kappa = \frac{S_s}{S_{\nu}}$$
J. Tian et al.,
Phys. Rev. C 90, 024313 (2014) $\kappa = 1.27$
(I.) A.W. Steiner et al.,
Phys. Rep. 411, 325 (2005) $\kappa = 0.545$
(II.) A.W. Steiner et al.,
S_{\nu} = 24.1 MeV
Phys. Rep. 411, 325 (2005) $\kappa = 0.545$
(II.) A.W. Steiner et al.,
S_{\nu} = 27.3 MeV
Phys. Rep. 411, 325 (2005) $\kappa = 1.68$
Fit
 $S_{\nu} = 26.5(8) \text{ MeV}$
 $\kappa = 1.67(7)$

Summary and outlook

- Inelastic proton scattering at extreme forward angles is a tool to probe the dipole response in nuclei
- Experimental systematics of the dipole polarizability: ¹⁶O,²⁷AI,^{40,48}Ca,⁶⁸Ni, ⁹⁰Zr, ^{112,114,116,118,120,124}Sn, ²⁰⁸Pb, and in the near future ⁵⁸Ni
- What can be learned from the new polarizability data?

