Self-energy of pion and its impact on equation of state and binary neutron star merger

Ninoy Rahman

Vimal Vijayan, Andreas Bauswein, Pok Man Lo, Gabriel Martínez-Pinedo GSI Helmholtzzentrum für Schwerionenforschung

March 24, 2023

Outline

- Motivation.
- ▶ Pionic equation of state.
- ▶ Impact on binary neutron star merger simulations.

Motivation

- ▶ Nuclear equation of state (EOS) impacts the outcomes of binary neutron star merger (BNS) simulations.
- ► EOS impacts threshold mass, ejecta properties, gravitational wave properties.
- Nucleosynthesis yield depends on ejecta properties such as neutron to proton ratio, entropy, and expansion timescale.
- Kilonova light curve and spectrum depend on the nucleosynthesis yield.

Chemical potential

Figure 1: Vijayan et. al. 2023

Pionic EOS

- We studied both free pions and interacting pions at BNS merger conditions.
- Pions are treated as Bose gas $f(p) = (1 + \exp((E(p) \mu_{\pi})/T))^{-1}$.
- We introduced pions to existing non-pionic EOSs such as SFHo and DD2 EOSs.
- ightharpoonup Condensed negatively charged pions π^- are considered.
- ▶ In BNS merger, the π^+ and π^0 productions are supressed.

Pionic EOS

- Interactions modify the relativistic pionic energy-momentum relation: $E^2(p) = m_\pi^2 + p^2 + \mathrm{Re}\Sigma_{\pi\mathrm{N}}(p) + \mathrm{Re}\Sigma_{\pi\pi}(p)$ and the effective mass $m_{\mathrm{eff}}^2(p) = m_\pi^2 + \mathrm{Re}\Sigma_{\pi\mathrm{N}}(p) + \mathrm{Re}\Sigma_{\pi\pi}(p)$.
- Attractive interaction leads to $m_{\rm eff}(p) < m_{\pi}$ and repulsive interaction results in $m_{\rm eff}(p) > m_{\pi}$.
- Pionic self-energy Σ is evaluated using the phase shift data δ from pion-pion and pion-nucleon scattering experiments.

$$egin{aligned} \Sigma_{\pi\mathrm{N}/\pi}(
ho) &= \int rac{\mathrm{d}^3 q}{(2\pi)^3} rac{f_{\mathrm{N}/\pi}(q)}{2\epsilon(q)} T(s)\,, \ T(s) &= -8\pi\sqrt{s} P_{\mathrm{cm}}^{-1}(2I+1) \exp\left(i\delta(s)\right) \sin\left(\delta(s)\right) (1) \end{aligned}$$

Phase shifts

Figure 2: The pion-nucleon phase shifts (left panel) are from Hoferichter et al. 2016 and the pion-pion phase shifts (right panel) are Protopopescu et al. 1973, Estabrooks and Martin 1974, Froggatt and Petersen 1977.

EOS and Tolman-Oppenheimer-Volkoff solutions

Pion interactions modify the energy-momentum relation by \sim 5%.

Figure 3: Pressure vs number density (left panel) and Tolman–Oppenheimer–Volkoff solutions (right panel) at β -equilibrium.

BNS merger simulations: setup

- We conducted general relativistic BNS merger simulations with our pionic EOSs.
- ▶ Pionic effective mass is treated as a free parameter with values equal to 139.57, 170, 200 MeV.

Figure 4: Pressure (left panel) and pion fraction (right panel) vs temperature.

BNS merger simulations: results

BNS merger simulations: ejecta properties

Figure 5: ejecta histograms against electron fraction (left panel) and radial velocity (right panel).

Summary and conclusion

- ▶ We studied pionic EOS with and without interactions.
- ▶ Pion-pion and pion-nucleon two-body interactions show minute influence on the EOS and the TOV solutions.
- ▶ BNS merger simulations are conducted employing pionic EOS with parametric pion mass.
- ▶ GW peak frequency can shift upto ~150Hz.
- ▶ Noticeable increase in ejecta mass with the inclusion of pions.
- \blacktriangleright Threshold mass of the prompt black hole formation reduces by $0.07 {\rm M}_{\odot}.$

Key questions and future developments

- ▶ Inclusion of the three body pion-nucleon/pion-pion interactions and their impact on EOS.
- ▶ In future simulations, muons and neutrinos need to be included and pion decay to muon should be considered.

Backup

Backup

