Impact of the momentum dependence of the neutron and proton potentials on pion production in heavy-ion collisions

arXiv:2307.02395 [nucl-th], PRC

Natsumi Ikeno (Tottori University, Texas A&M University)

Akira Ono (Tohoku University)

NuSym23, XIth International Symposium on Nuclear Symmetry Energy 18-22 September 2023 GSI Darmstadt, Germany

Transport equation for heavy-ion collisions

 132 Sn + 124 Sn, E/A = 300 MeV, $b \sim 0$

• Transport equation for one-body distribution function $f_a(\mathbf{r}, \mathbf{p}, t)$ BUU eq. $(a = n, p, \Delta^-, \Delta^0, \Delta^+, \Delta^{++}, \pi^-, \pi^0, \pi^+)$

$$\frac{\partial f_a}{\partial t} + \frac{\partial \varepsilon_a}{\partial \boldsymbol{p}} \cdot \frac{\partial f_a}{\partial \boldsymbol{r}} - \frac{\partial \varepsilon_a}{\partial \boldsymbol{r}} \cdot \frac{\partial f_a}{\partial \boldsymbol{p}} = I_a^{\text{coll}}$$

Mean-field propagation term ε_a includes potentials U_a

Collision term I^{coll} includes potential U_a (NN \leftrightarrow NN , NN \leftrightarrow N Δ , $\Delta \leftrightarrow$ N π)

Fully incorporation is still a challenging problem

- Threshold effect (conservation of energy and momentum)
 A few codes: Ferini et al., NPA 762 (2005): M. Cozma, PLB 753, 166 (2016):
 T. Song and C. M. Ko, PRC 91, 014901 (2015): Z. Zhang and C. M. Ko., PRC 97, 014610 (2018)
- Cross sections

A.B. Larionov and U. Mosel, NPA728, 135 (2003)

Y. Cui, Y. X. Zhang and Z. X. Li, PRC98, 054605 (2018)

we rigorously calculate the collision terms of NN \leftrightarrow N Δ and $\Delta \leftrightarrow$ N π processes with the precise conservation of energy and momentum under the potentials (Both threshold effect and cross section in collision term)

Transport equation for heavy-ion collisions

 132 Sn + 124 Sn, E/A = 300 MeV, $b \sim 0$

• Transport equation for one-body distribution function $f_a(\mathbf{r}, \mathbf{p}, t)$ BUU eq. $(a = n, p, \Delta^-, \Delta^0, \Delta^+, \Delta^{++}, \pi^-, \pi^0, \pi^+)$

$$\frac{\partial f_a}{\partial t} + \frac{\partial \varepsilon_a}{\partial p} \cdot \frac{\partial f_a}{\partial r} - \frac{\partial \varepsilon_a}{\partial r} \cdot \frac{\partial f_a}{\partial p} = I_a^{\text{coll}}$$

Mean-field propagation term ϵ_a includes potentials U_a

Collision term I^{coll} includes potential U_a (NN \leftrightarrow NN , NN \leftrightarrow N Δ , $\Delta \leftrightarrow$ N π)

- Threshold effect (conservation of energy and momentum)
- Cross sections
- Pion production in HIC

 $\begin{array}{ll} \underline{\Delta^{-}, \pi^{-} \text{ production}} \\ nn \to p \Delta^{-} \\ \Delta^{-} \to n \pi^{-} \end{array} \qquad \begin{array}{ll} \underline{\Delta^{++}, \pi^{+} \text{ production}} \\ pp \to n \Delta^{++} \\ \Delta^{++} \to p \pi^{+} \end{array}$

Effect of different momentum of U_p and U_n in the high-momentum region seems to be important on the Δ and pion production at E/A=300 MeV

Pion production at $S\pi RIT$ experiment

- Charged pion ratio π^-/π^+ : Proposed to be sensitive to symmetry energy at high density B. A. Li, PRL 88 (2002) 192701
- SπRIT experiment @RIBF
 J. Estee et al. [SπRIT], PRL26 (2021) 162701
 Slope of the symmetry energy is reported to be 42 < L < 117 MeV with dcQMD(TuQMD)

- Transport model evaluation project (TMEP): G.Jhang et al. [SπRIT, TMEP], PLB 813(2021)136016
- ✓ Most results do not agree with the data of π^-/π^+
- ✓ The band for each model: Different L effect
- ✓ Our previous model (AMD+JAM) had similar results to others

<= Potentials were not taken into account in the collision term (NN \leftrightarrow NA, Δ \leftrightarrow N π)

In our study:

- Improve the AMD+sJAM model to properly take into account such potentials consistently
- ✓ See the effect of momentum dependence of the neutron and proton potentials on the pion production

Momentum dependence of the nucleon potentials

Skyrme interaction (SLy4, m^{*}/m=0.70) (not used)

$$U(\boldsymbol{r},\boldsymbol{p}) = A(\boldsymbol{r})\boldsymbol{p}^2 - 2\boldsymbol{B}(\boldsymbol{r}) \cdot \boldsymbol{p} + C(\boldsymbol{r}),$$

U(p) at p>500 MeV/c is important for the Δ , π productions

=> p² dependence needs modification in the high-momentum region

$$\begin{split} \Lambda_{\rm md} = & 5.0 \ {\rm fm^{-1}}: \mbox{Used in AMD} \\ & U({\boldsymbol r},{\boldsymbol p}) = A({\boldsymbol r}) \frac{{\boldsymbol p}^2}{1+{\boldsymbol p}^2/\Lambda_{\rm md}^2} + C({\boldsymbol r}) \\ & \mbox{with } B({\boldsymbol r}) = 0 \end{split}$$

rel (relativistic form): Used in sJAM with $\Sigma = (\Sigma^s, \Sigma^0, \Sigma)$ $m^* = m_N + \Sigma^s,$ $U(\boldsymbol{r},\boldsymbol{p}) = \sqrt{(m_N + \Sigma^s)^2 + (\boldsymbol{p} - \boldsymbol{\Sigma})^2} + \Sigma^0 - \sqrt{m_N^2 + \boldsymbol{p}^2}$ $E^* = \sqrt{m_N^{*2} + p^{*2}},$ $oldsymbol{p}^* = oldsymbol{p} - oldsymbol{\Sigma}$ Parametrization from Skyrme interaction: equivalent up to $O(p^2)$ $m^* = (m_N^{-1} + 2A)^{-1}, \quad \Sigma^s = m^* - m_N, \quad \Sigma = 2m^*B, \quad \Sigma^0 = C - \Sigma^s - \frac{\Sigma^2}{2m^*},$

Nucleon and Δ potentials

Nucleon potential SLy4:L108 (Stiff), SLy4 (Soft), SkM* in the relativistic form

Nuclear matter properties for the effective interactions of Skyrme SLy4, SLy4:L108, and SkM*

	SLy4	SLy4:L108	SkM*
$\rho_0 [{\rm fm}^{-3}]$	0.160	0.160	0.160
E/A [MeV]	-15.97	-15.97	-15.77
<i>K</i> [MeV]	230	230	217
m^*/m_N	0.70	0.70	0.79
S_0 [MeV]	32.0	32.0	30.0
L [MeV]	46	108	46
$\Delta m_{np}^*/(m_N\delta)$	-0.18	-0.18	+0.33
in n-rich	$m_n^* < m_p^*$	$m_n^* < m_p^*$	$m_n^* > m_p^*$

Nucleon and Δ potentials

- Nucleon potential
 SLy4:L108 (Stiff), SLy4 (Soft), SkM*
 in the relativistic form
- Δ potentials: $\Sigma_{\Delta} = (\Sigma_{\Lambda}^{s}, \Sigma_{\Lambda}^{0}, \Sigma_{\Delta})$ Consist of isoscalar and isovector part $\Sigma_{\Delta^-} = \Sigma_{is} + \frac{3}{2}\Sigma_{iv}$ $\Sigma_{\Delta^0} = \Sigma_{is} + \frac{1}{2}\Sigma_{iv}$ $\Sigma_{\Delta^+} = \Sigma_{is} - \frac{1}{2}\Sigma_{iv}$ $\Sigma_{\Delta^{++}} = \Sigma_{is} - \frac{3}{2}\Sigma_{iv}$ isoscalar part: isovector part: $\Sigma_{\rm is}^s = \frac{1}{2} (\Sigma_n^s + \Sigma_p^s)_{\rm SkM^*},$ $\Sigma_{\rm iv}^s = \frac{\gamma^{\Delta}}{3} (\Sigma_n^s - \Sigma_n^s)_{\rm SkM^*},$ $\Sigma_{\rm is}^0 = \frac{1}{2} (\Sigma_n^0 + \Sigma_p^0)_{\rm SkM^*} + \alpha_\rho^\Delta \frac{\rho}{\rho_0} + \alpha_\tau^\Delta \frac{\tau}{\tau_0}, \qquad \Sigma_{\rm iv}^0 = \frac{\gamma^\Delta}{3} (\Sigma_n^0 - \Sigma_p^0)_{\rm SkM^*},$ $\Sigma_{\rm is} = \alpha_{\rho}^{\Delta} \frac{J}{\rho_{\rm o}},$ $\Sigma_{iv} = 0.$

based on the nucleon potential in the SkM* parametrization

Free parameters: $\alpha^{\Delta}_{\rho}, \alpha^{\Delta}_{\tau}, \gamma^{\Delta}$

No Pion potential

• Formulation of NN \rightarrow N Δ under potentials $N(1) + N(2) \rightarrow N(3) + \Delta(4)$ reaction:

 $d\sigma = f_{\rm in} f_{\rm out} \frac{|\mathcal{M}|_{\Sigma=0}^2}{16\pi\tilde{s}} \frac{[p_{\rm f}^*]_{\rm out}}{[p_{\rm i}^*]_{\rm in}} \frac{A(m_4)dm_4}{2\pi} \frac{d\Omega_{\rm f}^*}{4\pi}$

- Phase space factor $f_{in}f_{out}[p_{f}^{*}]_{out}/[p_{i}^{*}]_{in}$: Depends on the potential (Σ_i^s , Σ_i^0 , Σ_i) of the initial and final state particles

$$\begin{split} [p_f^*]_{\text{out}} &= \sqrt{\frac{[s_{\text{out}}^* - (m_3^* + m_4^*)^2][s_{\text{out}}^* - (m_3^* - m_4^*)^2]}{4s_{\text{out}}^*}} \\ s_{\text{out}}^* &= (E_3^* + E_4^*)^2 - (\boldsymbol{p}_3^* + \boldsymbol{p}_4^*)^2 \\ &= (E_1^* + E_2^* + \Sigma_1^0 + \Sigma_2^0 - \Sigma_3^0 - \Sigma_4^0)^2 \\ &- (\boldsymbol{p}_1^* + \boldsymbol{p}_2^* + \boldsymbol{\Sigma}_1 + \boldsymbol{\Sigma}_2 - \boldsymbol{\Sigma}_3 - \boldsymbol{\Sigma}_4)^2 \end{split}$$
Energy and m conservation

- Δ spectral function A(m):

1

$$A(m) = \frac{4m^{2}\Gamma_{\Delta}(m)}{(m^{2} - M_{\Delta}^{2})^{2} + m^{2}\Gamma_{\Delta}(m)^{2}}$$

 $\Gamma_{\Delta}(m) = \Gamma_{\rm sp} \frac{\rho}{\rho_0} + \sum \Gamma_{\Delta \to N \pi}(m)$ e.g. A.B. Larionov and U. Mosel, NPA728, 135 (2003).

Decay width evaluated with $[p_{f}^{*}]_{out}$ in the $\Delta \rightarrow N\pi$

$$\Gamma_{\Delta \to N\pi}(m_{\Delta}) = C_{\Delta N\pi} f_{\text{out}} \frac{M_0 \Gamma_0}{m_{\Delta}} \left(\frac{[p_{\text{f}}^*]_{\text{out}}}{p_0}\right)^3 \frac{p_0^2 + \Lambda^2}{[p_{\text{f}}^*]_{\text{out}}^2 + \Lambda^2},$$

- Potential effect on the cross section
- Different channels for Δ production

• Formulation of NN \rightarrow N Δ under potentials $N(1) + N(2) \rightarrow N(3) + \Delta(4)$ reaction:

 $d\sigma = f_{\rm in} f_{\rm out} \frac{|\mathcal{M}|_{\Sigma=0}^2}{16\pi\tilde{s}} \frac{[p_{\rm f}^*]_{\rm out}}{[p_{\rm i}^*]_{\rm in}} \frac{A(m_4)dm_4}{2\pi} \frac{d\Omega_{\rm f}^*}{4\pi}$

- Phase space factor $f_{in}f_{out}[p_{f}^{*}]_{out}/[p_{i}^{*}]_{in}$: Depends on the potential (Σ_i^s , Σ_i^0 , Σ_i) of the initial and final state particles

$$\begin{split} [p_f^*]_{\text{out}} &= \sqrt{\frac{[s_{\text{out}}^* - (m_3^* + m_4^*)^2][s_{\text{out}}^* - (m_3^* - m_4^*)^2]}{4s_{\text{out}}^*}} \\ s_{\text{out}}^* &= (E_3^* + E_4^*)^2 - (\boldsymbol{p}_3^* + \boldsymbol{p}_4^*)^2 \\ &= (E_1^* + E_2^* + \Sigma_1^0 + \Sigma_2^0 - \Sigma_3^0 - \Sigma_4^0)^2 \\ &- (\boldsymbol{p}_1^* + \boldsymbol{p}_2^* + \boldsymbol{\Sigma}_1 + \boldsymbol{\Sigma}_2 - \boldsymbol{\Sigma}_3 - \boldsymbol{\Sigma}_4)^2 \end{split}$$
 Energy and matrix conservation
$$- (\boldsymbol{p}_1^* + \boldsymbol{p}_2^* + \boldsymbol{\Sigma}_1 + \boldsymbol{\Sigma}_2 - \boldsymbol{\Sigma}_3 - \boldsymbol{\Sigma}_4)^2 \end{split}$$

- Δ spectral function A(m):

$$A(m) = \frac{4m^{2}\Gamma_{\Delta}(m)}{(m^{2} - M_{\Delta}^{2})^{2} + m^{2}\Gamma_{\Delta}(m)^{2}}$$

 $\Gamma_{\Delta}(m) = \Gamma_{\rm sp} \frac{\rho}{\rho_0} + \sum \Gamma_{\Delta \to N \pi}(m)$ e.g. A.B. Larionov and U. Mosel, NPA728, 135 (2003).

Decay width evaluated with $[p_{f}^{*}]_{out}$ in the $\Delta \rightarrow N\pi$

$$\Gamma_{\Delta \to N\pi}(m_{\Delta}) = C_{\Delta N\pi} f_{\text{out}} \frac{M_0 \Gamma_0}{m_{\Delta}} \left(\frac{[p_{\text{f}}^*]_{\text{out}}}{p_0}\right)^3 \frac{p_0^2 + \Lambda^2}{[p_{\text{f}}^*]_{\text{out}}^2 + \Lambda^2},$$

- Potential effect on the cross section
- Different channels for Δ production

AMD+sJAM transport model

- In the (N, Δ , π) system, sJAM works identically to JAM if $\Sigma = 0$
- The NN \leftrightarrow N Δ , $\Delta \leftrightarrow$ N π processes are calculated in sJAM under the potentials (Σ_i^s , Σ_i^0 , Σ_i) with a precise treatment of energy conservation
- Potential dependence on cross section is also considered in a natural way

Potential information is sent from AMD to sJAM together with the nucleon information (test particle) at every time step of 1 fm/c

Effect of nucleon potential on pion production

✓ SLy4 vs. SLy4:L108: Relatively small dependence of symmetry energy (L) on pion production

✓ SLy4 vs. SkM*: Momentum dependence of U_n and U_p has a strong effect on pion production

From nucleons to pion ratios

- \checkmark L dependence (SLy4 vs SLy4:L108) in N/Z is inverted in the Δ production.
- ✓ Effect of the symmetry energy L (SLy4 vs SLy4:L108) : Relatively small on pion production
- ✓ Effect of the momentum dependence of U_n and U_p (SLy4 vs SkM*): Strong
- \checkmark π^{-}/π^{+} carries strong information on the momentum-dependence of U_n and U_p

Summary

- We use the AMD+sJAM transport model, modified to correctly incorporate the nucleon and Δ resonance potentials in the collision processes of NN \leftrightarrow N Δ , $\Delta \leftrightarrow$ N π
- The momentum dependence of the nucleon potential has a very strong influence on the NN ↔ N∆ process (SLy4 vs. SkM*)
- Charged pion ratios also strongly reflect information on the momentum dependence of nucleon potentials
- As the high-density symmetry energy effect, L-dependence in the N/Z ratio is reversed for ∆ production (SLy4 vs. SLy4:L108)

Conclusion and Question:

- Pion ratios are more sensitive to the momentum dependence of Un and Up than to the effect of the high-density symmetry energy.

--> Seems hard to determine the high-density symmetry energy from only pion observable.

- Need to check other ingredients like pion potentials (on going)

Better observables and ways to determine the symmetry energy?
 Pion + nucleon fragments + ...

Delta potential (isoscalar and isovector)

- Effects of the **isovector part** of U_{Δ}
- Δ potentials: $\Sigma_{\Delta} = (\Sigma_{\Delta}^{s}, \Sigma_{\Delta}^{0}, \Sigma_{\Delta})$ Consist of isoscalar and isovector part

 $\Sigma_{\Delta^{-}} = \Sigma_{is} + \frac{3}{2}\Sigma_{iv}$ $\Sigma_{\Delta^{0}} = \Sigma_{is} + \frac{1}{2}\Sigma_{iv}$ $\Sigma_{\Delta^{+}} = \Sigma_{is} - \frac{1}{2}\Sigma_{iv}$ $\Sigma_{\Delta^{++}} = \Sigma_{is} - \frac{3}{2}\Sigma_{iv}$

isoscalar part: $\Sigma_{is}^{s} = \frac{1}{2} (\Sigma_{n}^{s} + \Sigma_{p}^{s})_{SkM^{*}},$ $\Sigma_{is}^{0} = \frac{1}{2} (\Sigma_{n}^{0} + \Sigma_{p}^{0})_{SkM^{*}} + \alpha_{\rho}^{\Delta} \frac{\rho}{\rho_{0}} + \alpha_{\tau}^{\Delta} \frac{\tau}{\tau_{0}},$ $\Sigma_{is}^{0} = \alpha_{\rho}^{\Delta} \frac{J}{\rho_{0}},$ $\Sigma_{iv} = 0.$ based on the nucleon potential in the SkM*

based on the nucleon potential in the SkM* parametrization

Free parameters: $\alpha^{\Delta}_{\rho}, \alpha^{\Delta}_{\tau}, \gamma^{\Delta}$

✓ Effect of the isospin splitting of the ∆ potential ($\gamma_{\Delta}=1$ vs. $\gamma_{\Delta}=3$) is of the same order as that of the nuclear symmetry energy (SLy4 vs SLy4:L108).

Delta potential (isoscalar and isovector)

• Effects of the **isoscalar part** of U_{Δ} and spreading width Γ^{Δ}

- ✓ Results are similar qualitatively
- ✓ Effect of the symmetry energy (SLy4 vs SLy4:L108) is now stronger
- ✓ Effect of the difference in the momentum dependence of U_n and U_p (SLy4 vs SkM*) is always the most significant

Delta potential (isoscalar and isovector)

• Effects of the isoscalar part of U_{Λ} and spreading width Γ^{Λ}

 π^{-}/π^{+} ratio of the spectra is not affected much

- Low momentum region of the spectra is significantly affected by Γ^{Δ}
- Pion yield is overestimated due to the lack of the repulsive terms in ${\rm U}_{\Delta}$

[No repulsive terms]

How to understand the effects in Nucleon dynamics

How to understand the effects in Nucleon dynamics

How to understand the effects in Delta and pion

 $\left(\frac{N}{Z}\right)^2_{sys}$

How to understand the effects in Delta and pion

Interactions: SLy4, SLy4:L108, SkM*

• Energy density:

 $\mathcal{E}_{\rm int}(\mathbf{r}) = \sum_{\alpha\beta} \Big\{ U^{t_0}_{\alpha\beta} \rho_\alpha(\mathbf{r}) \rho_\beta(\mathbf{r}) + U^{t_3}_{\alpha\beta} \rho_\alpha(\mathbf{r}) \rho_\beta(\mathbf{r}) [\rho(\mathbf{r})]^\gamma + U^\tau_{\alpha\beta} \tilde{\tau}_\alpha(\mathbf{r}) \rho_\beta(\mathbf{r}) + U^\nabla_{\alpha\beta} \nabla \rho_\alpha(\mathbf{r}) \nabla \rho_\beta(\mathbf{r}) \Big\},$

Densities:
$$\rho_{\alpha}(\boldsymbol{r}) = \int \frac{d\boldsymbol{p}}{(2\pi\hbar)^3} f_{\alpha}(\boldsymbol{r},\boldsymbol{p}), \quad \tilde{\tau}_{\alpha}(r) = \int \frac{d\boldsymbol{p}}{(2\pi\hbar)^3} \frac{[\boldsymbol{p}-\bar{\boldsymbol{p}}(\boldsymbol{r})]^2}{1+[\boldsymbol{p}-\bar{\boldsymbol{p}}(\boldsymbol{r})]^2/\Lambda_{\mathrm{md}}^2} f_{\alpha}(\boldsymbol{r},\boldsymbol{p}),$$

with $\bar{\boldsymbol{p}}(r) = \frac{1}{\sum_{\alpha} \rho_{\alpha}(r)} \sum_{\alpha} \int \frac{d\boldsymbol{p}}{(2\pi\hbar)^3} \boldsymbol{p} f_{\alpha}(\boldsymbol{r},\boldsymbol{p}).$

The coefficients are related to the Skyrme parameters

$$\begin{split} U_{\alpha\beta}^{t_0} &= \langle \alpha\beta | \frac{1}{2} t_0 (1+x_0 P_{\sigma}) | \alpha\beta - \beta\alpha \rangle, \\ U_{\alpha\beta}^{t_3} &= \langle \alpha\beta | \frac{1}{12} t_3 (1+x_3 P_{\sigma}) | \alpha\beta - \beta\alpha \rangle, \\ U_{\alpha\beta}^{\tau} &= \langle \alpha\beta | \frac{1}{4} t_1 (1+x_1 P_{\sigma}) | \alpha\beta - \beta\alpha \rangle \\ &+ \langle \alpha\beta | \frac{1}{4} t_2 (1+x_2 P_{\sigma}) | \alpha\beta + \beta\alpha \rangle, \\ U_{\alpha\beta}^{\nabla} &= \langle \alpha\beta | \frac{3}{16} t_1 (1+x_1 P_{\sigma}) | \alpha\beta - \beta\alpha \rangle \\ &- \langle \alpha\beta | \frac{1}{16} t_2 (1+x_2 P_{\sigma}) | \alpha\beta + \beta\alpha \rangle, \end{split}$$

In the case of cut-off parameter $\Lambda_{md} = \infty$, interaction is equivalent to the Skyrme type interaction

$$\begin{aligned} v_{ij} &= t_0 (1 + x_0 P_\sigma) \delta(\mathbf{r}) \\ &+ \frac{1}{2} t_1 (1 + x_1 P_\sigma) [\delta(\mathbf{r}) \mathbf{k}^2 + \mathbf{k}^2 \delta(\mathbf{r})] \\ &+ t_2 (1 + x_2 P_\sigma) \mathbf{k} \cdot \delta(\mathbf{r}) \mathbf{k} \\ &+ \frac{1}{6} t_3 (1 + x_3 P_\sigma) [\rho(\mathbf{r}_i)]^\gamma \delta(\mathbf{r}), \end{aligned}$$

the spin–isospin label α (or β) = $p \uparrow$, $p \downarrow$, $n \uparrow$ and $n \downarrow$

Interactions: SLy4, SLy4:L108, SkM*

- $\begin{aligned} & \text{Momentum-dependent potential (in AMD):} \\ & U_{\alpha}(r,p) = (2\pi\hbar)^{3} \frac{\delta}{\delta f_{\alpha}(r,p)} \int \mathcal{E}_{\text{int}}(r) dr = A_{\alpha}(r) \frac{[p-\bar{p}(r)]^{2}}{1+[p-\bar{p}(r)]^{2}/\Lambda_{\text{md}}^{2}} + \tilde{C}_{\alpha}(r), \end{aligned}$ $& \text{with } A_{\alpha}(r) = \sum_{\beta} U_{\alpha\beta}^{\tau} \rho_{\beta}(r) \\ & \tilde{C}_{\alpha}(r) = \sum_{\beta} \left\{ 2U_{\alpha\beta}^{t_{\alpha}} \rho_{\beta}(r) + 2U_{\alpha\beta}^{t_{\beta}} \rho_{\beta}(r)[\rho(\mathbf{r})]^{\gamma} + U_{\alpha\beta}^{\tau} \tilde{\tau}_{\beta}(r) 2U_{\alpha\beta}^{\nabla} \nabla^{2} \rho_{\beta}(r) \right\} + \left(\sum_{\alpha'\beta'} U_{\alpha'\beta'}^{t_{\beta}} \rho_{\alpha'}(r) \rho_{\beta'}(r) \right) \gamma[\rho(\mathbf{r})]^{\gamma-1}. \end{aligned}$
- Relativistic version (in sJAM): Nucleon single-particle energy $E_a(r, p) = \sqrt{(m_N + \Sigma_a^s(r))^2 + (p - \Sigma_a(r))^2} + \Sigma_a^0(r)$.

 $\begin{pmatrix} \text{Parametrization from Skyrme interaction: equivalent up to O(p^2):} \\ \frac{p^2}{2m_N} + A_a(p-\bar{p})^2 + \tilde{C}_a + m_N \approx \sqrt{(m_N + \Sigma_a^s)^2 + (p - \Sigma_a)^2} + \Sigma_a^0 & \text{c.f. Zhen Zhang and Che Ming} \\ \text{Ko, PRC 98 (2018) 054614.} \end{pmatrix}$

$$\begin{split} \Sigma_{a}^{s} &= m_{a}^{*} - m_{N} & \text{with the nucleon effective mass} \quad m_{a}^{*} &= (m_{N}^{-1} + 2A_{a})^{-1} \\ \Sigma_{a} &= 4A_{a}m_{a}^{*}\bar{p} = 2m_{a}^{*}\sum_{b}U_{ab}^{\tau}J_{b} \\ \Sigma_{a}^{0} &= \tilde{C}_{a} - \Sigma_{a}^{s} + A_{a}\bar{p}^{2} - 8m_{a}^{*}A_{a}^{2}\bar{p}^{2} = C_{a} - \Sigma_{a}^{s} - \frac{\Sigma_{a}^{2}}{2m_{a}^{*}} \\ \Sigma_{a}^{0} &= \sqrt{(m_{N} + \Sigma^{s})^{2} + p^{2}} + \Sigma^{0} - \sqrt{m_{N}^{2} + p^{2}} \\ \end{split}$$

Cross section NN \rightarrow N Δ under potentials

Cross section NN \rightarrow N Δ under potentials

