NUSYM23 XIth International Symposium on Nuclear Symmetry Energy

Toward a quantitative evaluation of the nuclear EOS

Olivier LOPEZ

CNRS/IN2P3, Normandie Université, ENSICAEN LPC Caen, France

Content

1. Phenomenological part :

- Seyler-Blanchard effective interaction as a specific 2N interaction (and beyond)
- Implementation in a semi-classical framework : *Thomas-Fermi* approximation
- Stochastic bayesian method for parameter estimation
- Results for GS properties : binding energies, charge radii and n-skin thicknesses
- Consequences for nuclear matter : nuclear EOS and empirical parameters

2. Experimental part :

- Non-parametric regression from experimental measurements
- Bayesian Gaussian Process Emulator

Discussion and conclusions : what can we learn ...

Seyler-Blanchard effective interaction

The **SB** interaction was first developed in the 60's and is a **momentum-** and **2-body** semi-empirical interaction, here supplemented by a **density term** to cope with **higher order correlations (medium)**.

$$u(r_{12}, p_{12}) = C.Y(r_{12})[-\alpha + \beta(p_{12}/P_{sat})^2 - \gamma(P_{sat}/p_{12}) + \sigma(2\bar{\rho}/\rho_0)^{2/3}]$$

Yukawa : Non-satur. Finite r-dependence Attractive Momentum-dependence Repulsive + attractive **Density-dependent** Repulsive

 $C = 2T_{sat}/\rho_{sat}$ is the coupling constant of the interaction, with $\rho_{sat} = 3/(4\pi r_o^3)$ and $r_o = 1.14$ fm P_{sat} , T_{sat} are the Fermi momentum and energy at saturation density

Normalized Yukawa function with a finite range a=0.59294 fm :

$$Y(r_{12}) = \frac{1}{4\pi a^3} \frac{e^{-r_{12}/a}}{r_{12}/a}.$$

This is a phenomenological interaction requiring 6 parameters :

$$\alpha_{\ell,u} = \frac{1}{2} (1 \mp \xi) \alpha, \quad \beta_{\ell,u} = \frac{1}{2} (1 \mp \zeta) \beta, \quad \gamma_{\ell,u} = \frac{1}{2} (1 \mp \zeta) \gamma, \quad \sigma_{\ell,u} = \frac{1}{2} (1 \mp \zeta) \sigma,$$

where the indices *I*,*u* stand for *like* (-, *pp*,*nn*) and *unlike* (+,*np*) particles

```
4 are for the isocalar part : \alpha, \beta, \gamma, \sigma
2 for the isovector part : \xi, \zeta
```

W.D. Myers, and W.J. Swiatecki, Nucl. Phys. A 601 (1996) 141

Extended Thomas-Fermi model with SB interaction

Using a semi-classical approach : extended Thomas-Fermi model

- **2** protons/neutrons per phase space cell, within a lattice with mesh r_0 =1.14 fm
- SB interaction between all nucleons (no gradient corrections),
- Coulomb repulsion (no exchange term but Slater approx.) between protons,
- Minimization of the total energy $E = E_{kin} + E_{nuc} + E_{coul}$ by Metropolis sampling of the proton, neutron positions and momenta on the *TF* lattice

We get **ground-state masses** (binding energies) corrected from **pairing and Wigner terms** to compare with **experimental masses :** Audi & Wapstra's *Atomic Mass Evaluation (AME*).

 $\alpha = 1.94684, \quad \beta = 0.15311, \quad \gamma = 1.13672, \quad \sigma = 1.05$

W.D. Myers, and W.J. Swiatecki, Nucl. Phys. A **601** (1996) 141

rms deviations are obtained from the comparison with **1654** nuclei. The average *rms* deviation over all considered nuclei is $\sigma = 0.655$ MeV

Ground-State Masses : experimental evaluation *AME*

Ground-State Masses from Extended Thomas-Fermi

Theoretical (ETF with SB interaction from Myers & Swiatecki)

Part of HIPSE package for initialization: Seyler-Blanchard Interaction in a Thomas-Fermi Model with Markov Chains Monte Carlo (MCMC) in a similar formulation as Myers & Swiatecki

Qualification of the agreement

Bayesian Monte Carlo with gradient descent algorithm

Relative distance : $\lambda = (B_{exp}-B_{SBTF,i})/B_{exp}$

For any parameter x_i at iteration i

$$x_{i+1} = x_i + \Delta B_i / \lambda_i$$
$$\Delta B_i = B_i - B_{i-1}$$

Stopping condition when :

 $|B_{exp}-B_{SBTF,i}| < 500 \ keV$

Initial sampling from uniform prior distributions :

 $x_i = x_0 \pm 20 \%$

Qualification of the agreement (II)

$$\chi^{2}$$
 residual : $\chi^{2}_{B} = (1/n) \sum_{i}^{n} \sigma^{2}_{B}$ n=3070 (Z,N>10)

Qualification of the agreement (III)

GS properties : Neutron skins

$\Delta r_{np} = \langle r_n^2 \rangle^{1/2} - \langle r_p^2 \rangle^{1/2}$			
-		SBTF	
Nucleus	$< r_n^2 >^{1/2}$	$\Delta r_{np} \pm \sigma$	$\Delta r_{np} \pm \sigma [ref]$
	(fm)	(fm)	(fm)
^{40}Ca	3.35	-0.03 ± 0.02	-0.04±0.02 [88, 90]
^{48}Ca	3.60	$0.16{\pm}0.03$	$0.16 {\pm} 0.02$ [89, 90]
^{64}Ni	3.79	$0.01 {\pm} 0.02$	-0.01±0.02 [87]
^{68}Ni	4.01	$0.19{\pm}0.03$	$0.19{\pm}0.01$ [91]
^{100}Sn	4.35	-0.06 ± 0.02	-0.08±0.01 [92]
^{116}Sn	4.66	$0.11{\pm}0.02$	0.11±0.02 [93]
^{120}Sn	4.73	$0.14{\pm}0.03$	$0.15{\pm}0.03$ [93]
^{132}Sn	4.87	$0.20 {\pm} 0.04$	$0.18 {\pm} 0.02$ [94]
^{208}Pb	5.63	$0.18 {\pm} 0.04$	$0.19 {\pm} 0.02$ [87, 105]

Charge radii

$$< r_{ch}^2 > \approx < r_p^2 > + < R_p^2 > + N/Z < R_n^2 >$$

Spin-orbit : $0 - 0.05 \text{ fm} \rightarrow + SO + +3/4M^2$

$$\Delta r_{ch} = 0.029 \text{ fm}$$

Tension with *PREX-II* ?

$$\Delta r_{np} = 0.283 \pm 0.071$$
 fm
 $L_{sym} = 106 \pm 37$ MeV

 $\delta(\Delta r_{np}) = 0.025 \text{ fm}$

From a large-scale analysis incl. 25 NM : X. Roca-Maza *et al.*, PRL **106**, 252501 (2011) $\Delta r_{np} = 0.00147L_{sym} + 0.101$

Probability Density Functions (PDF) for SB parameters

Distributions with mean values and consistent standard variations...

Results for

the nuclear EOS

Derivation for Cold Nuclear Matter : Equation of State

Total energy of a nucleus with neutron, proton densities at T=0

 \rightarrow Integrals are trivial for uniform matter at T=0 (const. densities and step func.)

W.D. Myers and W.J. Swiatecki, Annals of Physics **204**, 401-431 (1990)

Derivation for Cold Nuclear Matter : Equation of State

Neutron ($\delta = 1$) and symmetric nuclear matter ($\delta = 0$) EoS: $\epsilon(\rho, \delta) = E(\rho, \delta)/E_{sat}$ [29] $\begin{cases} \epsilon(\rho,0) = \frac{3}{5}(1-\gamma)\Omega^2 - \frac{\alpha}{2}\Omega^3 + \frac{3}{5}B\Omega^5\\ \epsilon(\rho,1) = \frac{3}{5}\kappa^2(1-\gamma_l)\Omega^2 - \alpha_l\Omega^3 + \frac{6}{5}\kappa^2B_l\Omega^5 \end{cases}$ $E_{sym}(\rho) = \epsilon(\rho, 1) - \epsilon(\rho, 0)$ ≠ parabolic approx. in δ^2 $\Omega = (\rho/\rho_{sat})^{1/3} \kappa = 2^{1/3}$ see J. Margueron's talk $B = \beta + \frac{5}{6}\sigma$ $E_{sym}/T_{sat} = \frac{3}{5} \{\kappa^2 - 1 + \gamma (1 + \zeta/\kappa - 1/\kappa)\} \Omega^2$ $B_l = \beta_l + \frac{5}{6}\sigma_l$ $+\frac{\alpha\xi}{2}\Omega^{3}+\frac{3}{5}\{\kappa^{2}(1-\zeta)-1\}B\Omega^{5}$ b (Ω^3) a (Ω^2) $c(\Omega^5)$ Kind of EoS Neutron ($\delta = 1$) 0.44882-0.350550.13674Symmetric ($\delta = 0$) -0.97342-0.082030.61687Asymm. ($\delta = 0.282$) -0.0171-0.951760.59882Isovector E_{sym} 0.794430.27232-0.18275

EoS for Cold Nuclear Matter : isoscalar and isovector terms

100,000 EOS computed from mean values and std deviations of SB parameter PDFs

Isoscalar & Neutron

Isovector

 \rightarrow Maximum E_{sym} = 50 ± 8 MeV for ~3 ρ_{sat} (1 σ)

EoS for Cold Nuclear Matter : isoscalar and isovector terms

100,000 EOS computed from mean values and std deviations of SB parameter PDFs

Isoscalar & Neutron

Isovector

Olivier LOPEZ, LPC Caen (lopezo@lpccaen.in2p3.fr), NUSYM23

Phase transition at high ρ ?

EoS empirical parameters from SBTF : isoscalar

100,000 EOS computed from mean values and std deviations of SB parameter PDFs

Taylor expansion of energy around ρ_{sat} : $e(n_0, n_1) = e_{is}(n_0) + \delta^2 e_{iv}(n_0)$.

EoS empirical parameters from SBTF : isovector

100,000 EOS computed from mean values and std deviations of SB parameter PDFs

EoS empirical parameters : isoscalar + isovector terms

Taylor expansion of energy around n_0 (ρ_{sat}):

$$e(n_0, n_1) = e_{is}(n_0) + \delta^2 e_{iv}(n_0), \quad e_{is} = E_{sat} + \frac{1}{2}K_{sat}x^2 + \frac{1}{3!}Q_{sat}x^3 + \frac{1}{4!}Z_{sat}x^4 + \dots,$$
(2)
$$x = (\rho - \rho_{sat})/3\rho_{sat} \qquad e_{iv} = E_{sym} + L_{sym}x + \frac{1}{2}K_{sym}x^2 + \frac{1}{3!}Q_{sym}x^3 + \frac{1}{4!}Z_{sym}x^4 + \dots,$$
(2)

Parameter (order)	Mean ± σ (MeV)
E _{sat} (0)	-15.8 ± 0.5
K _{sat} (2)	237 ± 11
Q _{sat} (3)	-200 ± 26
Z _{sat} (4)	236 ± 47
J _{sym} (0)	32.5 ± 1.2
L _{sym} (1)	58.5 ± 10
K _{sym} (2)	-153 ± 24
Q _{sym} (3)	243 ± 38
Z _{sym} (4)	-297 ± 64

Third and fourth order param. *Q*,*Z* could be likely uncertain due to the extrapolation to high densities $\rho >> 2\rho_{sat}$...

It is here TRUE values for isovector EP ! (cf. J. Margueron's talk)

Gaussian Process Regression : non-linear & bayesian

Gaussian Processes for Machine Learning C.E. Rasmussen & C.K.I. Williams, MIT Press (2006) www.GaussianProcess.org/gpml

Probabilistic (bayesian) inference

Find the best **non-parametric** solutions and quantify their **dispersion**

GPR : step by step

Matérn kernel

1 posterior

$$C_
u(d) = \sigma^2 rac{2^{1-
u}}{\Gamma(
u)} \left(\sqrt{2
u} rac{d}{
ho}
ight)^
u K_
u \left(\sqrt{2
u} rac{d}{
ho}
ight),$$

GPR step by step

Matérn kernel

Gaussian Process Regression

Matérn kernel

Matérn kernel

$$C_{\nu}(d) = \sigma^{2} \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\sqrt{2\nu} \frac{d}{\rho}\right)^{\nu} K_{\nu}\left(\sqrt{2\nu} \frac{d}{\rho}\right),$$

50,000 posteriors trained on 10 exp. points

EoS for Cold Nuclear Matter : isovector part

50,000 posteriors trained on 10 exp. points

 \rightarrow GP and SBTF are in agreement up to ρ = 3 ρ_{sat}

Benchmark

GPR : J_{sym} - K_{sym} **2D** correlations \rightarrow Ellipse plots

Olivier LOPEZ, LPC Caen (lopezo@lpccaen.in2p3.fr)

GP-B : Gaussian process BUQ-EYE

C. Drischler, R. J. Furnstahl, J. A. Melendez and D. R. Phillips, PRL **125**, 202702 (2020)

Gaussian Process Regression 1σ ellipse

GP-B : Gaussian process BUQ-EYE

C. Drischler, R. J. Furnstahl, J. A. Melendez and D. R. Phillips, PRL **125**, 202702 (2020)

100

EoS empirical parameters : isoscalar + isovector terms

50,000 EoS

Taylor expansion of energy around n_0 (ρ_{sat}):

 $e(n_0, n_1) \approx e_{is}(n_0) + \delta^2 e_{iv}(n_0).$

$$e_{is} = E_{sat} + \frac{1}{2}K_{sat}x^{2} + \frac{1}{3!}Q_{sat}x^{3} + \frac{1}{4!}Z_{sat}x^{4} + \dots,$$
(2)
$$e_{iv} = E_{sym} + L_{sym}x + \frac{1}{2}K_{sym}x^{2} + \frac{1}{3!}Q_{sym}x^{3} + \frac{1}{4!}Z_{sym}x^{4} + \dots,$$

Parameter (order)	Mean ± σ (MeV)
E _{sat} (0)	-15.8 ± 0.5
K _{sat} (2)	237 ± 11
Q _{sat} (3)	-200 ± 26
Z _{sat} (4)	236 ± 47
J _{sym} (0)	32.5 ± 1.2
L _{sym} (1)	58.5 ± 10
K _{sym} (2)	-153 ± 24
Q _{sym} (3)	243 ± 38
Z _{sym} (4)	-297 ± 64

 $x = (\rho - \rho_{sat})/3\rho_{sat}$

Third and fourth order param. Q,Zare likely uncertain due to the extrapolation to high densities $\rho >> 2\rho_{sat}$...

From GPR

L _{sym}	57 ± 14
K _{sym}	-104 ± 194

EoS for Cold Nuclear Matter, experimental constraints

Parameter (order)	Mean ± σ SBTF (MeV)	Mean ± σ GPR (MeV)	Mean ± σ <i>Exp.</i> * (MeV)
E _{sat} (0)	-15.8 ± 0.5		-15.8 ± 0.3
K _{sat} (2)	237 ± 11		230 ± 20
Q _{sat} (3)	-200 ± 26		300 ± 400
Z _{sat} (4)	236 ± 47		-500 ± 1000
J _{sym} (0)	32.5 ± 1.2	32.5 ± 2	32.5 ± 2
L _{sym} (1)	58.5 ± 10	57 ± 14	60 ± 15
K _{sym} (2)	-153 ± 24	-104 ± 194	-100 ± 100
Q _{sym} (3)	243 ± 38		100 ± 400
Z _{sym} (4)	-297 ± 64		-500 ± 1000

- Semi-classical approach : extended Thomas-Fermi Model with Seyler-Blanchard interaction

- Plausible set of EOS obtained from a bayesian analysis based on ground-state masses (AME2020)

- EOS empirical parameters consistent with all experimental results but PREX I/II

* Extracted from Table VII *ibid* J. Margueron, R. Hoffmann Casali, and F. Gulminelli Phys. Rev. C **97**, 025805, 025806 (2018).

Conclusions

- SBTF agrees with GPR up to $2\rho_{sat}$ with experimental / theoretical estimates
- Adjusted to the latest atomic masses evaluation AME2020
- Dedicated **gradient descent algorithm** has provided a kind of **bayesian analysis** on *SB* interaction parameters and has defined the **theoretical uncertainties**
- Following Myers & Swiatecki's work, PDF EOS empirical parameters have been derived accordingly
- For the <code>isoscalar</code> empirical parameters (95% CL, 2σ) :

 $E_{sat} = -15.8 \pm 1.0 \text{ MeV}$, $K_{sat} = 237 \pm 22 \text{ MeV}$, $Q_{sat} = -200 \pm 52 \text{ MeV}$, $Z_{sat} = 236 \pm 94 \text{ MeV}$

- For the **isovector** empirical parameters (**95%** *CL*, **2** σ) :

 $J_{sym} = 32.5 \pm 2.6 \text{ MeV}, L_{sym} = 58.5 \pm 20 \text{ MeV},$ $K_{sym} = -153 \pm 48 \text{ MeV}, Q_{sym} = 243 \pm 76 \text{ MeV}, Z_{sym} = -297 \pm 128 \text{ MeV}$

Results are consistent with (almost) all known experimental and theoretical constraints including non-linear regressions (GPR/GP-B) But agreement with PREX/CREX results ?

→ uncertainties should be reduced... PREX / CREX/ ASY-EOS , ...

The end

Epilogue :

Taylor expansion for EOS still valid at high ρ , especially for $\rho > 2\rho_{sat}$?

Can we assess a possible phase transition at large densities from HIC and/or NS ??

EoS for Cold Nuclear Matter : isovector part

SBTF : 50,000 EOS computed from bayesian inference using AME2020 + charge radii GP : Gaussian Process with Matérn kernel trained on 10 experimental data

EoS for Cold Nuclear Matter, experimental constraints

Parameter (order)	Mean ± σ SBTF (MeV)	Mean ± σ GPR (MeV)	Mean ± σ <i>Exp.</i> * (MeV)
E _{sat} (0)	-15.8 ± 0.5		-15.8 ± 0.3
K _{sat} (2)	237 ± 11		230 ± 20
Q _{sat} (3)	-200 ± 26		300 ± 400
Z_{sat} (4)	236 ± 47		-500 ± 1000
J _{sym} (0)	32.5 ± 1.2	32.5 ± 2	32.5 ± 2
L _{sym} (1)	58.5 ± 10	57 ± 14	60 ± 15
K _{sym} (2)	-153 ± 24	-104 ± 194	-100 ± 100
Q _{sym} (3)	243 ± 38		100 ± 400
Z _{sym} (4)	-297 ± 64		-500 ± 1000

- Semi-classical approach : extended Thomas-Fermi Model with Seyler-Blanchard interaction

- Plausible set of EOS obtained from a bayesian analysis based on ground-state masses (AME2020)
- EOS empirical parameters consistent with all experimental results incl. GPR but PREX I/II

* Extracted from Table VII *ibid* J. Margueron, R. Hoffmann Casali, and F. Gulminelli Phys. Rev. C **97**, 025805, 025806 (2018).

Results

Parameter (order)	Mean ± σ GP (MeV)	Mean ± σ <i>Exp.</i> * (MeV)	Mean ± σ SπRIT <i>2021</i> ** (MeV)
J _{sym} (0)	32.5 ± 2	32.5 ± 2	35.3 ± 2.8
L _{sym} (1)	57 ± 14	60 ± 15	79.5 ± 38
K _{sym} (2)	-104 ± 194	-100 ± 100	47 ± 252
NS Crust-Core transition		Mean ± σ GP	Mean ± σ <i>Lynch2022***</i>
Density $ ho_{cc}$ (fm ⁻³)		0.075 ± 0.007	0.069 ± 0.006
Proton fraction Y _{cc}		0.027 ± 0.005	0.021 ± 0.005
Pressure P _{cc} (MeV/fm ³)		0.32 ± 0.05	0.33 ± 0.05

→ GPR results compatible with current (experimental) estimates

 * Extracted from Table VII *ibid* J. Margueron, R. Hoffmann Casali, and F. Gulminelli Phys. Rev. C 97, 025805, 025806 (2018).
 ** J. Estee *et al.*, Phys. Rev. Lett. 126, 162701 (2021)

*** W. G. Lynch, and M. B. Tsang, Phys. Lett. B 830, 137098 (2022)

Charge radii

From the *rms* proton density $< r_p^2 >$:

$$< r_{ch}^2 > \approx < r_p^2 > + < R_p^2 > + N/Z < R_n^2 >$$
 with : $< R_p^2 > = 0.7080 \text{ fm}^2$
+ SO $+3/4M^2$ $< R_n^2 > = -0.117 \text{ fm}^2$

 $\Delta r_{ch} = 0.029 \text{ fm}$ over 706 nuclei with Z = 8 - 96

Spin-orbit contribution : 0 – 0.05 fm

I. Angeli, and K.P. Marinova, Atomic Data and Nucl. Data Tables **99**, 69-95 (2013).

From in-source resonance-ion laser spectroscopy at *ISOLDE*: SBTF

 $< r_{ch}^2(^{202}Hg) >= 29.8870 \text{ fm}^2 < r_{ch,exp}^2(^{202}Hg) >= 29.8592 \text{ fm}^2$ $< r_{ch}^2(^{206}Hg) >= 30.1829 \text{ fm}^2 < r_{ch,exp}^2(^{206}Hg) >= 30.0712 \text{ fm}^2$ $< r_{ch}^2(^{208}Hg) >= 30.3326 \text{ fm}^2 < r_{ch,exp}^2(^{208}Hg) >= 30.2862 \text{ fm}^2$ T. Day Goodacre, et al., Phys. Rev. Lett. **126**, 032502 (2021).

Non-parametric regression: Gaussian Processes (GP)

Taking advantage of the experimental estimates from literature

→ W. G. Lynch, and M. B. Tsang, Phys. Lett. B 830, 137098 (2022)

→ High density $\rho / \rho_{sat} > 1$: 2 mean values + 1σ uncertainties

FOPI-LAND
ASY-EOSP. Russotto et al., Phys. Lett. B 697, 471 (2011): elliptic flowSxRITP. Russotto et al., Phys. Rev. C 94, 034608 (2016): elliptic flowJ. Estee et al., Phys. Rev. Lett. 126, 162701 (2021): π^*/π ratio

 $E_{sym}([1.45\pm0.2]\rho_{sat}) = 52 \pm 13 \text{ MeV}, E_{sym}([2\pm0.25]\rho_{sat}) = 56 \pm 15 \text{ MeV}$

→ Saturation density $\rho / \rho_{sat} = 1$: 1 combined value + 1 σ uncertainty

J. Margueron, R. Hoffmann Casali, and F. Gulminelli, *Phys. Rev.* **97**, 025806 (2018): Large body of theoretical predictions based on nuclear masses

 E_{svm} ([1±0.1] ρ_{sat}) = 32.5 ± 2 MeV

→ Low density $\rho_{sat}/5 \le \rho / \rho_{sat} < 1$: 6 mean values + 1 σ uncertainties

P. Danielewicz and J. Lee, Nucl. Phys. A 922, 1 (2014)
M. B. Tsang, et al., Phys. Rev. Lett. 102, 122701 (2009)
B. A. Brown, Phys. Rev. Lett. 111, 232502 (2013)
Z. Zhang, and L. W. Chen, Phys. Lett. B 726, 234 (2013)
Isobaric Analog States
Isospin diffusion
GS for doubly magic nuclei
neutron skins

$$\begin{split} E_{sym} & ([0.21 \pm 0.11] \rho_{sat}) = 10.1 \pm 1.0 \text{ MeV}, \ E_{sym} & ([0.31 \pm 0.03] \rho_{sat}) = 15.9 \pm 1.0 \text{ MeV} \\ E_{sym} & ([0.43 \pm 0.05] \rho_{sat}) = 16.8 \pm 1.2 \text{ MeV}, \ E_{sym} & ([0.63 \pm 0.03] \rho_{sat}) = 24.7 \pm 0.8 \text{ MeV} \\ E_{sym} & ([0.66 \pm 0.04] \rho_{sat}) = 25.5 \pm 1.1 \text{ MeV}, \ E_{sym} & ([0.72 \pm 0.01] \rho_{sat}) = 25.4 \pm 1.1 \text{ MeV} \end{split}$$

→ Limit boundary (no uncertainty) : E_{sym} (0)= 0 ± 0 MeV