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Cooling down of neutron star mergers
Nurtury of r-process heavy elements from kilonova AT2017gfo: Sr II, Watson et al.,, Nature (2019)
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High T ~ 40-50 MeV (=5x10" K) -
Merger of neutron stars (BNSM vs HIC)
gamma-ray burst, kilonova ejecta:
hadrons, quark-gluon plasma,

protons + neutrons
(HADES talk by Manuel Lorenz)
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T = 0.7-1 MeV (0.8-1.2 x10'°K) — Temperatures where seed elements are created

before charge reactions freeze out (high neutron/seed ratio).
T = 0.4-0.5MeV (~-5x10°K) — n-capture occurring until it also freezes out: time scale for

n capture longer than § decay (less neutrons, lower T).
T = 0.03 MeV (A few 108K) — neutrons are finally consumed (T=0 ground state).

Most et al,, Phys. Rev. D (2023)

Kilonovae, Metzger, Living Reviews in Relativity (2020)

Probing dense baryon-rich matter with virtual photons. The HADES-Collaboration. Nature Physics (2019)

Neutron Star Mergers & Nucleosynthesis of Heavy Elements, Thielemann, Eichler, Panov & Wehmeyer, ARNPS (2017)




Predictions of neutron drip line & r-process path exhibit a significant variation
due to wide range of conditions not accurately determined.

Wang & Chen, PRC 92 (2015) 031303(R); Erler et al., Nature 486 (2012) 509

DFT with different interactions + Weizsacker-Skyrme mass formula
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“Studies of nuclear interactions in systems with high or extreme neutron-to-proton ratios are
crucial for understanding the neutron drip line (the convergence of asm for heavy nuclei
establishes the frontier of the neutron drip line), the location of which is not well known.”
Francesca Sammarruca, Symmetry 2023



Sensitivity studies of r-process network calculations

SEMF, HFB-21, FRDM, WS, DZ and other mass models
present rms deviations of 2> 300 keV with respect to the available mass data
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Difference between theoretical mass predictions.
Gray band at 1 MeV shows the mass variation size.

Mumpower, Surman, Aprahamian, JPG & EP] Web of Conferences 2015



Universality of elemental r-process abundances from Ba to Pb

Normalized r-process-element abundances of six undisturbed (~13-billion-year-old) r-process Galactic halo
+ Reticulum Il (first r-process galaxy) stars overlaid with the scaled solar r-process pattern (blue line)
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“Given that the Sun (Population 1) formed billions of years after these metal-poor stars (Population I1),
from gas that was enriched by many stellar generations in various ways, the astounding agreement
between the patterns suggests that the r-process is universal.”

Frebel, Annu. Rev. Nucl. Part. Sci. (2018)
Ji, Frebel, Chiti et al. R-process enrichment from a single event in an ancient dwarf galaxy. Nature 531, 610 (2016)



Origin for such universality of r-process abundances remains unknown
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Frebel, Annu. Rev. Nucl. Part. Sci. (2018)

“These observational facts suggest a rather well-defined origin of heavy elements beyond iron.
We do not know if this may be only an artifact of nuclear properties such as binding energies and
f-decay rates, or it may point to a single cosmic site with astrophysical conditions that are
generated uniformly throughout cosmic time.”

KKajino et al. Current status of r-process nucleosynthesis, Progress in Particle and Nuclear Physics (2019)



Symmetry energy in Giant Dipole Resonances (GDR)

“In a sense, the nuclear symmetry energy asm( A) can be considered to be the fundamental
parameter of the giant dipole resonance.” Herman & Fultz, Rev. Mod. Phys. (1975)
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Increase of ¢, values for loosely-bound and diffuse nuclei
Sensitive measures of long-range correlations of the nuclear force

Leptodermus approximation
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Orce, Phys. Rev. C (2015); Orce, Phys. Rev. C (2016)



Constraining the symmetry energy asm( A)
Theory and experiment provide a wide range of possibilities
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Polarizability of light nuclei through Coulomb excitation @ iThemba LABS, CERN, GSI (ala Banu et al)

Orce, in Proceedings of the 4th South Africa - JINR Symposium (Dubna) (2015)
Orce, Polarizability effects in atomic nuclei, IJMP E (2020)



o_2 values as a function of aym( A)
Missing o(y,p) contributions in self-conjugate nuclei
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The trend and magnitude of disintegration yields for
self-conjugate nuclei are in agreement with the
T=0 . .
Ay, evaporation model of Blatt & Weisskopf.
TZ=0

Orce, Competition between (y,p) and (y,n) photo-disintegration yields, Atomic Data & Nuclear Data Tables (2022)



Q&gs Journals Physics Magazine Help/Feedback

Tradition cannot be inherited, and if you want it you must obtain it by great labor.

PHYSICAL REVIEW C _ T. S. Eliot, “Tradition and the Individual Talent”

covering nuclear physics Introduction in R. Machleidt's Advances of Nuclear Physics 19 (1989)
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Shell-model calculations of the eleciric dipole (E1) polarizability have been performed for the ground state of selected {} and {}shell nuclei,
substantially advancing previous knowledge. Our results are slightly larger compared with the somewhat more scattered photo-absorption cross-
section data, albeit agreeing with calculations at shell closures and presenting a smooth trend that follows the leptodermus approximation provided
by the finite-range droplet model ({FRDM]}). The total E1 strengths also show an increasing trend proportional to the mass number which follows
from the classical oscillator strength ({TRK}) sum rule for the E'1 operator. The enhancement of the energy-weighted sum over E1 excitations with
respect to the {TRK} sum rule arises from the use of experimental single-particle energies and the residual particle-hole interaction.


https://arxiv.org/pdf/2309.08810.pdf
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Symmetry energy extracted @ T=0 MeV from ground state GDRs
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Danos, On the long-range correlation model of the photonuclear effect, Nucl. Phys. (1958)
Orce, Dey, Ngwetsheni, Bhattacharya, Pandit, Lesch, Zulu, MNRAS (2023)



Need to know what happens @ T > O MeV — Brink-Axel hypothesis to the rescue

The photoabsorption cross section is independent of the excitation energy of a nuclear system.
Insensitive to the details of the initial state. A GDR can be built on every state of the nucleus
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Excited-state GDRs present at moderate T < 1 MeV and spinJ < 0.6 A>/¢,
similar centroid energies and resonance strengths relative to the TRK dipole sum rule
as those found for the ground-state counterparts = Common physical origin for all GDRs

Snover, Annual Review of Nuclear and Particle Science (1986)
Gaardhoje, Annual Review of Nuclear and Particle Science (1992)



The angular momentum distribution is extracted
from the fold distribution F (number of multiplicity

Symmetry energy extracted @ T~0.7-1 MeV (GDRs built on excited sates)

Increase of ~5% in the centroid energy for T~0.7-1 MeV
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Reduction in the binding energy per nucleon as aym increases
Reduction of the neutron-capture cross section by =100 in the A=200 mass region (TALYS and EMPIRE)
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Nuclear chart given by the semi-empirical mass formula
Close-in neutron drip line for heavy elements
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The convergence of a,m for heavy nuclei establishes the frontier of the neutron drip line 16



Constant a,ym between T~0.7-1.3 MeV,
but neutron capture may occur @ T<0.5 MeV
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High T (40-50 MeV) — kilonova, gamma-ray burst, quarks + gluons, protons + neutrons
T = 0.7-1 MeV - likely the temperatures where seed elements are created
before charge reactions freeze out.
T = 0.5 MeV - neutron-capture may start occurring.
Afew 108K — neutrons are finally consumed.
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A close-in neutron drip line for heavy elements:
Not first time being suggested

Herman & Fultz, Rev. Mod. Phys. (1975) Goriely, NPA (2003) ISZn/ 2 < 3.5 MeV
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“The “universality” of the r-process abundances could
“This large value for this ratio favors a close-in possibly be explained by the rapid drop of microscopic
neutron drip line for heavy elements, and hence neutron capture rates at increasing neutron excesses
argues against the production of superheavy (which constrains the r-process flow to remain in the 18
elements by the r process in supernovae: narrow region of the nuclear chart characterized by low

”y

B half-lives and large neutron capture rates)



Conclusions
A larger symmetry energy @ T~0.7-1 MeV results in a close-in neutron drip line which
constrains the r-process flow and narrows down the nucleosynthesis path — universal
pattern of r-process abundances observed in galactic halo nuclei and our Sun.

Caution: Assumptions which may not be valid for exotic nuclei. structural effects

Semi-empirical mass formula (other mass models predict similar rms) ~ Ngwetsheni & Orce, Phys. Lett. B (2019)

Brink-Axel hypothesis, Ngwetsheni & Orce, Hyp. Int. (2019)

Similar temperature dependence below T-0.7 MeV. Ngwetsheni & Orce, EP] Web (2019)
Future work:

® Polarizability of light nuclei through Coulex @ iThemba LABS, CERN, GSI....

® What happens far from stability? (FAIR, FRIB, HIE-ISOLDE, etc)

® Real ab initio calculations of the nuclear polarizability/symmetry energy using chiral effective
field theory (F. Sammarruca’s talk)

® SALT: HRS/Infrared high-resolution spectroscopy of metal-poor stars (PI: Nico Orce)

My question/challenge:
What happens @ T=0.5 MeV where rapid neutron captures occur? 19



GAMKA - the Lion

UWC-led (PI: Nico Orce) consortium of four Universities (Stellenbosch, Zululand, Wits and UWC)
and iThemba LABS has been awarded ~€200k by the National Research Foundation (NRF)

for a new nuclear spectrometer (up to 30 detectors, configurations of clovers and large LaBrs).

The Gamma Ray Spectrometer for Knowledge in Africa, dubbed GAMKA - the Khoisan word for
lion" — will be housed at iThemba LABS and will be used to study a wide range of nuclear physics
and nuclear astrophysics phenomena such as nuclear shapes, GDRs built on excited states,
collective properties, short nuclear lifetimes and gamma-ray strength functions.

-

GAMKA array @ iThemba LABS commissioned in May 2021 20

https://www.youtube.com/watch?v=wxLRLOtXwmM&ab_channel=NicoOrce
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Abstract

Brenden Lesch

The abundances of about half of the elements heavier than iron are subtly attuned by the rapid neutron capture process or
r-process, which is intimately related to the competition between neutron capture, photo-disintegration and p-decay rates,
and ultimately depends on the binding energy of neutron-rich nuclei. The well-known Bethe-Weizsacker semi-empirical
mass formula describes the binding energy of ground states - i.e., nuclei with temperatures of T = 0 MeV — with the
symmetry energy parameter converging between 23 - 27 MeV for heavy nuclei. We find an unexpected enhancement of the
symmetry energy well above the ground state — at higher temperatures of T = 0.7 - 1.0 MeV — from the available data of giant
dipole resonances built on excited states. Although these are likely the temperatures where seed nuclei are created — during

the cooling down of the ejecta following neutron-star mergers or collapsars — the fact that the symmetry energy remains

constant between T = 0.7 - 1.0 MeV, may suggest an enhanced symmetry energy at lower temperatures, where neutron-

capture may start occurring. Calculations using this relatively larger symmetry energy yield a reduction of the binding energy

per nucleon for heavy neutron-rich nuclei and inhibits radiative neutron-capture rates. This results in a substantial close in

of the neutron drip line which may elucidate the long sought universality of heavy-element abundances through the 21
r-process; as inferred from the similar abundances found in extremely metal-poor stars and the Sun. Sensitivity studies of

r-process network calculations have been performed using more sophisticated mass models.
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