11th International Symposium on Nuclear Symmetry Energy (NuSym23) GSI, Darmstadt, Germany, Sep. 20th, 2023

Probing neutron skin with free spectator nucleons in ultracentral relativistic heavy-ion collisions

Jun Xu (徐骏)

Tongji University

Main collaborators: Lu-Meng Liu (刘 鹿蒙)(UCAS)

Jiangyong Jia (贾江涌)(Stony Brook)

Chun-Jian Zhang (张春健)(Stony Brook)

Lu-Meng Liu, Chun-Jian Zhang, Jia Zhou, JX*, Jiangyong Jia*, and Guang-Xiong Peng,

Phys. Lett. B 834, 137441 (2022), arXiv: 2203.09924 [nucl-th]

Lu-Meng Liu, Chun-Jian Zhang, JX*, Jiangyong Jia*, and Guang-Xiong Peng,

Phys. Rev. C 106, 034913 (2022), arXiv: 2209.03106 [nucl-th]

Lu-Meng Liu, JX*, and Guang-Xiong Peng,

Nucl. Phys. Rev. 40, 2022095 (2023), arXiv: 2301.08251 [nucl-th]

Lu-Meng Liu, JX*, and Guang-Xiong Peng,

Phys. Lett. B 838, 137701 (2023), arXiv: 2301.07893 [nucl-th]

Content

- Background
 - Neutron skin
 - Nuclear symmetry energy
- Model setups
 - Initial density distribution
 - Glauber model
 - Multifragmentation process
- Results and discussions
 - Probing Δr_{np} ~L
 - Probing $\Delta r_{np}(\theta) \sim W_0$
- Summary and outlook

Neutron skin and E_{sym}

For ²⁰⁸Pb:

 $\Delta r_{np} = 0.211^{+0.054}_{-0.063}$ fm from proton scattering $\Delta r_{np} = 0.16 \pm 0.07$ fm from pion scattering

 $\Delta r_{np} = 0.18 \pm 0.04 (\text{expt.}) \pm 0.05 (\text{theor.}) \text{ fm } \mathbf{from } \mathbf{\bar{p}}$ annihilation

$$\Delta r_{np} = 0.15 \pm 0.03 \text{(stat.)}_{-0.03}^{+0.01} \text{(sys.)} \text{ fm}$$

from coherent pion photoproduction

 $\Delta r_{np} = 0.283 \pm 0.071 \text{ fm}$ from parity-violating electron scatterings

Expansion around saturation density ρ_0

$$E_{sym}(\rho) = E_{sym}(\rho_0) + L\chi + \dots$$

$$\chi = \frac{\rho - \rho_0}{3\rho_0}$$

Slope parameter

$$L = 3\rho_0 \left[\frac{\partial E_{sym}(\rho)}{\partial \rho} \right]_{\rho = \rho_0}$$

Various constraints on $E_{sym}(\rho_0)$ and $L(\rho_0)$

Composition: Hyperons, Deconfined Quarks Kaon/Pion Condensates

Constraint on E_{sym} from Δr_{np}

L/MeV

CME and isobaric collisions

 $\gamma_{\alpha\beta} = \langle \cos (\phi_{\alpha} + \phi_{\beta} - 2\Psi_{2}) \rangle$ S. A. Voloshin, PRC (2004)

Significant background contribution

Isobaric collisions: similar bulk dynamics, different B

STAR, PRC (2022)

J. Zhao and F.Q. Wang, PPNP (2019)

Isobaric collisions to probe neutron skin

Charged-particle multiplicity

H.L. Li et al., PRL (2020)

probe the density distribution of colliding nuclei probe the density distribution of colliding nuclei

Observables at midrapidities suffer from complicated dynamics and model dependence

Net-charge multiplicity

Average transverse momentum

Intermediate-energy HIC to probe neutron skin

G.F. Wei et al., PRC (2014)

Suffer from:

- Model dependence
- **Interaction between spectator and participant**
- **Uncertainties of clusterization/multifragmentation**

 ■ R(t/³He) ⁵⁰Ca+¹²C
 □ R(n/p) 1.9 1.8 Ratio @50AMeV 1.6 1.5 (a) 1.8 1.7 Ratio 1.5 1.4 0.0 0.2 0.3 0.1 0.4 δ_{np} (fm)

Z.T. Dai et al., PRC (2014)

Z.T. Dai et al., PRC (2015)

Basic idea of our studies

Advantages:

- 1) Spectator matter has almost no interaction with participant matter
- 2) UCC region, free from uncertainties of clusterization/multifragmentation

Model setup: initial density distribution

Skyrme-Hartree-Fock (SHF) model:

$$v(\vec{r}_{1}, \vec{r}_{2}) = t_{0}(1 + x_{0}P_{\sigma})\delta(\vec{r})$$

$$+ \frac{1}{2}t_{1}(1 + x_{1}P_{\sigma})[\vec{k}'^{2}\delta(\vec{r}) + \delta(\vec{r})\vec{k}^{2}]$$

$$+ t_{2}(1 + x_{2}P_{\sigma})\vec{k}' \cdot \delta(\vec{r})\vec{k}$$

$$+ \frac{1}{6}t_{3}(1 + x_{3}P_{\sigma})\rho^{\alpha}(\vec{R})\delta(\vec{r})$$

$$+ iW_{0}(\vec{\sigma}_{1} + \vec{\sigma}_{2})[\vec{k}' \times \delta(\vec{r})\vec{k}].$$

Quantity	MSL0	Quantity	MSL0	
$t_0 (\text{MeV fm}^5)$	-2118.06	$\rho_0 ({\rm fm}^{-3})$	0.16	
$t_1 (\text{MeV fm}^5)$	395.196	E_0 (MeV)	-16.0	
$t_2 (\text{MeV fm}^5)$	-63.9531	K_0 (MeV)	230.0	
t_3 (MeV fm ^{3+3σ})	128 57.7	$m_{s,0}^*/m$	0.80	
x_0	-0.0709496	$m_{v,0}^{*}/m$	0.70	
x_1	$-0.332\ 282$	$E_{\text{sym}}(\rho_0) (\text{MeV})$	30.0	
x_2	1.358 30	L (MeV)	60.0	
x_3	$-0.228\ 181$	G_S (MeV fm ⁵)	132.0	
σ	0.235 879	G_V (MeV fm ⁵)	5.0	
W_0 (MeV fm ⁵)	133.3	$G_0'(ho_0)$	0.42	

L.W. Chen, C.M. Ko, B.A. Li, and JX PRC (2010)

Paring interaction

$$V_{\text{pair}}^{(n,p)} = V_0^{(n,p)} \left(1 - \frac{1}{2} \frac{\rho(\vec{r})}{\rho_0} \right) \delta(\vec{r}_1 - \vec{r}_2)$$

Hartree-Fock method:

$$\begin{split} \mathsf{E} &= \sum_{i} \left\langle i \left| \frac{p^2}{2m} \right| i \right\rangle + \frac{1}{2} \sum_{ij} \left\langle ij \right| \left. \tilde{v}_{12} \right| ij \right\rangle \\ &= \frac{\delta}{\delta \phi_i} \left(E - \sum_{i} e_i \int |\phi_i(\vec{\mathbf{r}})|^2 d^3 r \right) = 0 \end{split}$$

$$\left[-\vec{\nabla} \cdot \frac{\hbar^2}{2m_q^*(\vec{\mathbf{r}})} \vec{\nabla} + U_q(\vec{\mathbf{r}}) + \vec{W}_q(\vec{\mathbf{r}}) \cdot (-i)(\vec{\nabla} \times \vec{\sigma}) \right] \phi_i = e_i \phi_i$$

Hartree-Fock-Bogoliubov method:

$$\int d^{3}\mathbf{r}' \sum_{\sigma'} \begin{pmatrix} h(\mathbf{r}\sigma, \mathbf{r}'\sigma') & \tilde{h}(\mathbf{r}\sigma, \mathbf{r}'\sigma') \\ \tilde{h}(\mathbf{r}\sigma, \mathbf{r}'\sigma') & -h(\mathbf{r}\sigma, \mathbf{r}'\sigma') \end{pmatrix} \begin{pmatrix} \varphi_{1}(E, \mathbf{r}'\sigma') \\ \varphi_{2}(E, \mathbf{r}'\sigma') \end{pmatrix} \\
= \begin{pmatrix} E + \lambda & 0 \\ 0 & E - \lambda \end{pmatrix} \begin{pmatrix} \varphi_{1}(E, \mathbf{r}\sigma) \\ \varphi_{2}(E, \mathbf{r}\sigma) \end{pmatrix}$$

Particle density

$$\rho_q(\mathbf{\tilde{r}}) = \sum_{i,\sigma} |\phi_i(\mathbf{\tilde{r}},\sigma,q)|^2$$

Particle density

Pairing density

$$\rho(r) = \sum_{i} \varphi_2(E_i, r)^2 \qquad \tilde{\rho}(r) = -\sum_{i} \varphi_1(E_i, r)\varphi_2(E_i, r)$$

Reproduce E_b and R_c within 1.5%

M.V. Stoitsov et al., CPC (2013)

Model setup: initial density distribution

Multipole moments

$$Q_{\lambda,\tau} = \int \rho_{\tau}(\vec{r}) r^{\lambda} Y_{\lambda 0}(\theta) d^{3}r$$

Deformation parameters

$$\beta_{\lambda,\tau} = \frac{4\pi \, Q_{\lambda,\tau}}{3N_{\tau}R^{\lambda}}$$

Constrained SHFB calculation with fixed Q_{λ} (β_{λ})

	TABL	ΕIJ	I. Ne	utro	n-ski	in thicknes	sses Δr	_{np} and	deformation	on pa-
r	ameters	β_2	and	β_3	for	different	nuclei	using	different	slope
р	aramete	$\operatorname{rs} L$	of the	e sy	mme	try energy	from S	HFB ca	alculations	

		$\Delta r_{\rm np}$ (fm)			
Nucleus	$\beta_2,\ \beta_3$	$L = 30 \mathrm{MeV}$	L = 120 MeV		
⁹⁶ Zr	0, 0	0.147	0.231		
	0.06, 0.2 [43]	0.145	0.227		
⁹⁶ Ru	0, 0	0.028	0.061		
	0.16, 0 [43]	0.026	0.058		
¹⁹⁷ Au	-0.15, 0 [44,45]	0.127	0.243		
²⁰⁸ Pb	0, 0	0.149	0.281		

Model setup: Glauber model

5.02 TeV

Schematic Monte-Carlo Glauber model

Numbers of sources

 $\sqrt{s_{NN}}$

$$N_{\rm s} = (1 - x) \frac{N_{\rm part}}{2} + x N_{\rm coll}$$

200 GeV

Particle production n from each source

130 GeV

$$p_{\text{nbd}}(n; m, p) = \frac{(n+m-1)!}{(m-1)!n!} p^n (1-p)^m \sum_{\bar{n}=10^{-1}}^{\bar{n}} 10^{-1}$$

$$p = \frac{\bar{n}}{\bar{n}+m} 10^{-1}$$

σ_{NN}	40 mb	42 mb		68 mb	
	$\sqrt{s_{ m NN}}$	Х	\bar{n}	m	
$\frac{1}{96}$ Zr + $\frac{96}{96}$ Zr	200 GeV	0.12	2.3	2.0	
96 Ru + 96 Ru	200 GeV	0.12	2.3	2.2	
197 Au + 197 Au	130 GeV	0	4.8	4.6	
197 Au + 197 Au	200 GeV	0.10	5.8	2.3	
$^{208}\text{Pb} + ^{208}\text{Pb}$	5.02 TeV	0.09	10.3	3.2	

Model setup: multifragmentation process

Dynamics of participant matter is neglected!

A. Formation of heavy (A>3) clusters

MST

 $\Delta r < 3$ fm (empirical nucleon interaction range) $\Delta p < 300 \ \text{MeV/c}$ (empirical Fermi momentum at ρ_0)

B. Heavy (A>3) cluster deexcitation with GEMINI

Excitation energy

$$E = \frac{1}{N_{TP}} \sum_{i} \left(\sqrt{m^2 + p_i^2} - m \right)$$

$$+ \int d^3r \left[\frac{a}{2} \left(\frac{\rho}{\rho_0} \right)^2 + \frac{b}{\sigma + 1} \left(\frac{\rho}{\rho_0} \right)^2 \right]$$

$$+ \int d^3r E_{sym}^{pot} \left(\frac{\rho}{\rho_0} \right)^{\gamma} \frac{(\rho_n - \rho_p)^2}{\rho}$$

Angular momentum

$$\vec{L} = \sum \vec{r_i} \times \vec{p}_i$$

(test-particle method for parallel events with similar collision configuration)

$$\begin{array}{lll} \textbf{Simplified} & + \int d^3r \left[\frac{a}{2} \left(\frac{\rho}{\rho_0} \right)^2 + \frac{b}{\sigma+1} \left(\frac{\rho}{\rho_0} \right)^{\sigma+1} \right] + \int d^3r \left\{ \frac{G_S}{2} (\nabla \rho)^2 - \frac{G_V}{2} [\nabla (\rho_n - \rho_p)]^2 \right\} \\ & + \int d^3r E_{sym}^{pot} \left(\frac{\rho}{\rho_0} \right)^{\gamma} \frac{(\rho_n - \rho_p)^2}{\rho} & + \frac{e^2}{2} \int d^3r d^3r' \frac{\rho_p(\vec{r})\rho_p(\vec{r}')}{|\vec{r} - \vec{r}'|} - \frac{3e^2}{4} \int d^3r \left[\frac{3\rho_p}{\pi} \right]^{4/3} - \mathsf{E}_{\mathsf{GS}} \end{aligned}$$

Free nucleons:

- 1) Direct production from A and residue from C
- 2) Deexcitation from B

C. Coalescence for light (A=2,3) clusters

$$f_d = 8g_d \exp\left(-\frac{\rho^2}{\sigma_d^2} - p_\rho^2 \sigma_d^2\right)$$
 $f_{t/^3\text{He}} = 8^2 g_{t/^3\text{He}} \exp\left[-\left(\frac{\rho^2 + \lambda^2}{\sigma_{t/^3\text{He}}^2}\right) - (p_\rho^2 + p_\lambda^2)\sigma_{t/^3\text{He}}^2\right]$

Results and discussions: spectator matter

- More neutron-rich spectator matter in more neutron-rich system
- More neutron-rich spectator matter in more central collisions (large N_{ch})
- More neutron-rich spectator matter with a larger L or a thicker neutron skin Δr_{np}

Results and discussions: spectator particle yield

 N_{ch}

 N_{ch}

Results and discussions: probing L or Δr_{np}

Results and discussions: probing L or Δr_{np}

E_{cm}/A (MeV)

Results and discussions: effects from EB field

Spectator protons pushed by EB field generated by another colliding nucleus

-¹⁹⁷Au+¹⁹⁷Au@130GeV 0.1 0.0 200 400 600 800 1000 $<\Delta E_{EB}^{*}$ (MeV) ⁹⁷Au+¹⁹⁷Au@200GeV 2⁰ 2000 400 800 1200 1600 ²⁰⁸Pb+²⁰⁸Pb@5.02TeV = 30 MeV = 120 MeV 0 1000 2000 3000 4000 ${\sf N}_{\sf ch}$

Lienard-Wiechert formulas

$$e\vec{E}(t,\vec{r}) = \frac{e^2}{4\pi\epsilon_0} \sum_{i} Z_i \frac{1 - v_i^2}{(R_i - \vec{R}_i \cdot \vec{v}_i)^3} (\vec{R}_i - R_i \vec{v}_i)$$

$$e\vec{B}(t,\vec{r}) = \frac{e^2}{4\pi\epsilon_0} \sum_{i} Z_i \frac{1 - v_i^2}{(R_i - \vec{R}_i \cdot \vec{v}_i)^3} \vec{v}_i \times \vec{R}_i,$$

Assuming free propagation of nucleons

Relevant studies on $\Delta r_{np}(\theta)$ in deformed nuclei

Similar Δr_{np} in r and z directions

Different Δr_{np} in r and z directions

I. Hamamoto and X.Z. Zhang, PRC (1995)

P. Sarriguren et al., PRC (2007)

Affect the scissor-like motion (M1) in deformed nuclei

D. Pena Arteaga and P. Ring, arXiv: 0912.0908 [nucl-th]

Δr_{np} effect from different collision configurations

Δr_{np} effect from different collision configurations

		N_r	$\Delta(N_n/N_p)$		
		L = 30 MeV	$L=120~{ m MeV}$	$\Delta(1, n/1, b)$	
Random	$^{96}{ m Zr} + ^{96}{ m Zr}$	2.214 ± 0.002	2.478 ± 0.003	0.263 ± 0.004] ;
Tip-tip	@200 GeV	2.160 ± 0.002	2.370 ± 0.003	0.210±0.004	()/c)
Body-body		2.234 ± 0.002	2.518 ± 0.003	0.284 ± 0.004	(MeV/c)
Random	¹⁹⁷ Au+ ¹⁹⁷ Au	2.548±0.003	3.088 ± 0.003	0.540 ± 0.004	A>
Tip-tip	0200 GeV	2.544 ± 0.003	3.076 ± 0.003	0.532 ± 0.004	
Body-body		2.535 ± 0.003	3.054 ± 0.003	0.520 ± 0.004	.
Random	$^{238}\mathrm{U}+^{238}\mathrm{U}$	3.052±0.003	3.774±0.004	0.722±0.005	1
Tip-tip Body-body	$@193~{ m GeV}$	3.355 ± 0.004	4.202±0.005	0.847±0.006	
	$\beta_4 = 0$	2.992 ± 0.003	3.676 ± 0.004	0.684 ± 0.005	
Random	$^{238}\mathrm{U}+^{238}\mathrm{U}$	3.010±0.003	3.734 ± 0.004	0.725±0.005	
Tip-tip	$@193~{ m GeV}$	3.167 ± 0.003	3.987 ± 0.004	0.818 ± 0.005	
Body-body	$\beta_4 = 0.17$	2.940 ± 0.003	3.618 ± 0.004	0.677 ± 0.005	

JX, Z. Martinot, and B.A. Li, PRC (2012)

Deformed Δr_{np} from different SO interactions

Importance of SO interaction

Maria Goeppert Mayer

Protons

Skyrme-Hartree-Fock model

$$h_q = \frac{p^2}{2m} + U_q + (\vec{p} \times \vec{\sigma}), (q = n, p)$$

Hartree-Fock method
$$\vec{W_q} = \frac{W_0}{2} \left(\nabla \rho + \nabla \rho_q \right)$$

Schrödinger equation: $h_{_{\!q}} arphi_{_{\!q}} = e_{_{\!q}} arphi_{_{\!q}}$

Relativistic mean-field model

Dirac equation

Non-relativistic expansion

$$\vec{W}_{q} = \frac{C}{(2m - C\rho)^{2}} \nabla \rho, C = \frac{g_{\sigma}^{2}}{m_{\sigma}^{2}} + \frac{g_{\omega}^{2}}{m_{\omega}^{2}}$$

- Strength: $W_0 = 80 \sim 150 \text{ MeV fm}^5$
- Isospin dependence: kink of Pb isotope charge radii
- Density dependence: bubble nuclei

Spectator nucleons from different W₀

b=0 fm

- Collisions with random orientation generally have the largest $(N+Z)_{spectator}$
- $\hbox{\bf ^{\bullet} Tip-tip \ (body-body) \ collisions \ by \ prolate \ (oblate) \ nuclei \ have \ the \ smallest \ (N+Z)_{spectator} }$
- About 2/3 spectator nucleons become free nucleons

Spectator nucleons from different W₀

- Isospin asymmetry increased for free spectator nucleons compared to spectator matter
- Comparing N_n/N_p in triggered tip-tip and body-body Ru+Ru as well as Au+Au collisions may probe $\Delta r_{np}(\theta)$ and W_0
- Such effect is independent of L

Summary

- Free spectator nucleons N_n , N_p : clean probes
- Ultracentral HIC: free from deexcitations
- Ratio of neutron-rich to neutron-poor system:
 - $-(N_n)^{Zr+Zr}/(N_n)^{Ru+Ru}$ reduce uncertainties
 - $-(N_n/N_p)^{Zr+Zr}/(N_n/N_p)^{Ru+Ru}$ cancel detecting efficiency
- Triggering collision configurations: measure $\Delta r_{np}(\theta)$

Key question:way to unify different/contradictory experimental data PREXII and CREX, ²⁰⁸Pb nskin and other probes

Thank you!

junxu@tongji.edu.cn

About anti E_{sym}-L correlation from Nskin

We illustrate the idea with a popularly used symmetry energy of the following form,

$$E_{\text{sym}}(\rho) = E_{\text{sym}}^0 \left(\frac{\rho}{\rho_0}\right)^{\gamma}.$$
 (A1)

Thus, the slope parameter L of the symmetry energy can be expressed as

$$L = 3\rho_0 \left[\frac{dE_{\text{sym}}(\rho)}{d\rho} \right]_{\rho_0} = 3E_{\text{sym}}^0 \gamma. \tag{A2}$$

For a fixed symmetry energy at a subsaturation density ρ^* ,

$$E_{\text{sym}}(\rho^{\star}) = E_{\text{sym}}^{0} \left(\frac{\rho^{\star}}{\rho_{0}}\right)^{\gamma}, \tag{A3}$$

the expression of L in terms of E_{sym}^0 is

$$L = 3E_{\text{sym}}(\rho^{\star}) \left[\frac{E_{\text{sym}}^{0}}{E_{\text{sym}}(\rho^{\star})} \right] \frac{\ln \left[E_{\text{sym}}^{0} / E_{\text{sym}}(\rho^{\star}) \right]}{\ln(\rho_{0} / \rho^{\star})}. \tag{A4}$$

It is obviously seen that L increases with increasing E_{sym}^0 (see Ref. [64] as an example). The slope parameter at ρ^* can be expressed as

$$L(\rho^{\star}) = 3\rho^{\star} \left[\frac{dE_{\text{sym}}(\rho)}{d\rho} \right]_{\rho^{\star}} = L \left(\frac{\rho^{\star}}{\rho_0} \right)^{\gamma}, \quad (A5)$$

where $L(\rho^*)$ is seen to be smaller than L. For a fixed $L(\rho^*)$, the expression of E_{sym}^0 in terms of L is

$$E_{\text{sym}}^{0} = \frac{L(\rho^{\star})}{3} \frac{\ln(\rho^{\star}/\rho_{0})}{[L(\rho^{\star})/L] \ln[L(\rho^{\star})/L]}.$$
 (A6)

The function $x \ln(x)$ is negative for x < 1 and increases with increasing x for x > 0.4. Thus, $E_{\rm sym}^0$ generally increases with increasing $x = L(\rho^\star)/L$. Because L decreases with increasing x, this leads to an anticorrelation between L and $E_{\rm sym}^0$. This conclusion is general and helps us understand the results shown in Fig. 2 of the present manuscript.

JX, W.J. Xie, and B.A. Li, PRC (2020)

Results and discussions: ZDC background

R. Nepeivoda et al., Particles (2022)

