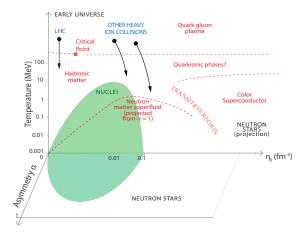
NEUTRON STARS: PROBING ULTRA-DENSE MATTER

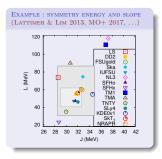
Micaela Oertel

micaela.oertel@obspm.fr


Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris/ Université Paris Cité

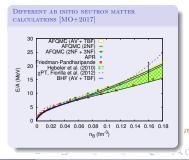
NuSym23, GSI Darmstadt, September 18-22, 2023

Based mainly on C. Mondal, M. Antonelli, F. Gulminelli, M. Mancini, J. Novak, MO, MNRAS 524, (2023) 3464


STRONGLY INTERACTING MATTER

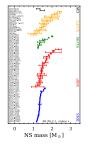
[Watts+2015]

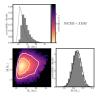
Neutron star matter is strongly interacting matter under extreme conditions not accessible in terrestrial laboratories (density, asymmetry) and non-perturbative many-body problem from the theory side


CONSTRAINTS FROM NUCLEAR PHYSICS

- Nuclear masses (binding energies) for many nuclei close to stability
- Extracting parameters of symmetric nuclear matter around saturation (n_0, E_B, K, J, L)
- Data from heavy ion collisions (flow constraint, meson production, ...)

[See e.g. many talks at this meeting]


- Data on nucleon-nucleon interaction fixing startpoint of many-body calculations
- Low density neutron matter : Monte-Carlo simulations and EFT approaches
 [See e.g. talk by Kai Hebeler]


On the astrophysical side

Pulsar observations

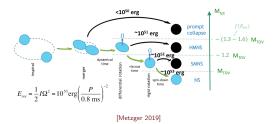
- Observed masses in binary systems (NS-NS, NS-WD, *x*-ray binaries)
 - Most precise ones from NS-NS binaries
 - ► Massive ones → constraints on core composition/EoS
- Prospects for asteroseismology, moment of interia, rotation frequencies, cooling,

[COMPOSE, courtesy L. Suleiman]

[[]Miller+ 2021]

- Radius estimates from *x*-ray observations
 - ▶ Radii from different types of objects, consensus on radius of a fiducial $M = 1.4 M_{\odot}$ star 10-15 km
 - NICER results gave for the first time mass and radius of the same star

[see talk by S. Guillot]

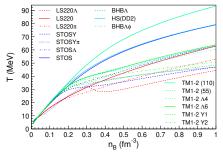

On the astrophysical side

GRAVITATIONAL WAVES

- $\bullet~$ GW170817 : first detection of a NS-NS merger with LIGO/Virgo detectors
- Information from different
 phases

[see e.g. talk by J. Read]

- Inspiral → masses of objects
- Late inspiral \rightarrow tidal deformability $\tilde{\Lambda}$

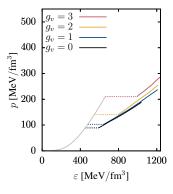

- Post merger GW emission not yet detected but in reach for 3rd generation detectors
- Electromagnetic counterpart with information about ejecta properties, kilonova, ...
- Many observables sensitive to EoS properties, what about the composition ?

ivatoire

Composition at high densities/temperatures

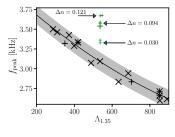
HADRONIC DEGREES OF FREEDOM

- Example : Hyperons can appear if the chemical potential is high enough to make conversion $N \to Y$ energetically favorable
- At onset density : smooth transition or first order phase transition
- Enhanced production at finite temperature in merger remnant/CCSN
- There can be others : Δ-resonances, pion/kaon condensates [see talks by A. Sedrakian, D. Bandyopadhyay]



[MO+2016]

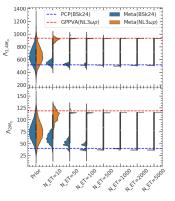
Composition at high densities/temperatures $_{\mbox{Quark matter}}$


- Hadron-quark phase transition possible in the NS core/PNS/merger remnant
- Possibly additional superconducting phase transitions in quark matter core
- New degrees of freedom \rightarrow impact on EoS
- Cold matter in β-equilibrium : phase transition → jump in (energy) density

[Otto+2020]

MATTER COMPOSITION FROM BINARY MERGERS? Post-merger phase

- Onset with smooth transition
 - Reduced thermal pressure in presence of additional degrees of freedom
 - \rightarrow shift in postmerger frequencies $_{\rm [Blacker+2023]}$
- First order phase transition
 - Very strong phase transition with no stable hybrid NS [Most+2018, Ecker+2019, ...]
 - ightarrow almost immediate collapse to BH at onset of phase transition
 - \rightarrow almost no identifiable signal


- Strong phase transition with stable hybrid NS and considerable quark core in merger remnant (Bauswein+2019,Most+2019,Weih+2020)
 - $\rightarrow~$ Oscillations frequencies show imprint of matter properties
 - \rightarrow Clear signal of phase transition
- Smooth transition leads to softening of EoS, potentially distinguishable

servatoire — LUTH

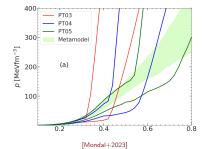
MATTER COMPOSITION FROM BINARY MERGERS?

- Matter not considerably heated up before merger
 - \rightarrow NS radius and cold β -equilibrated EoS
- NS EoS can be determined very precisely with 3rd generation detectors
- <u>But</u> : no information a priori about composition in absence of a phase transition

[Mondal& Gulminelli 2021, lacovelli+2023, Imam+2023] Additional information on symmetric matter needed

[lacovelli+2023]

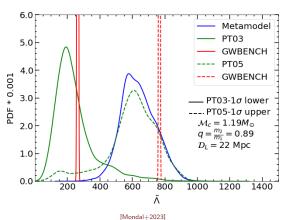
< □ > < 同 >


• Can we detect a phase transition with 3rd generation detectors? Depends on onset density, masses, distance, ...

[Sieniawska+2018, Tews+2018, Montana+2018, Han+2018, Christian+2018...]

DETECTABILITY OF A PT DURING BNS INSPIRAL SETUP OF THE STUDY

- Metamodel approach to nuclear matter (function of NMPs+ consistent CLDM crust) [Dinh Thi+2021] and quark matter (constant sound speed) [Mondal+2023]
- Injected EoS chosen within the ranges covered
- Three possible PT onset densities
- Simulate observations with 3rd generation detector network (ET +2CE)
 - Detector response estimated using Fisher matrix formalism within GWBENCH [Borhanian2021]
 - Fixing spins and inclination, varying distance and two component masses
 - Λ computed from injected EoS and m_i



NuSym23 , September 21, 2023 10 / 12

DETECTABILITY DURING BNS INSPIRAL

BAYESIAN ANALYSIS WITH ONE LOUD EVENT

- 450 simulated events (distance, component masses, injected EoS)
 - Mass ratio has little effect
 - Higher chirp mass can make it easier to distinguish
 - The smaller the distance the easier
 - A late PT is difficult to distinguish

• Possible to identify a strong PT with an early (low density) onset, high density onset masked [see also Tan+2022,Mroczek+2023]

• Analysis with cumulation of events to be done

SUMMARY AND OUTLOOK

Cold and $\beta\text{-equilibrated}$ matter

- Advanced and 3rd generation GW decetors together with other observational projects underway or planned (NICER, SKA and precursors, ...) will pin down precisely the NS EoS
- Low density PT probably identifiable

[European project for a ground-based 3rd generation GW detector]

(HOT) MATTER WITH DIFFERENT COMPOSITIONS

- GW from BNS post-merger phase in reach for 3rd generation detectors
- Neutrinos from next galactic supernova with efficient detectors (Super/Hyper-Kamiokande, ...)
- $\bullet\,$ Nuclear physics experiments (HIC, $\ldots)$ for more symmetric matter

 \rightarrow how to combine all this information to understand the phase diagram of strongly interacting matter?