

Status and future scientific program of RAON

Byungsik Hong

Center for Extreme Nuclear Matters (CENUM) & Department of Physics

Korea University

Outline

- **1. Overview of the RAON construction project**
- 2. Accelerator systems
 - Status of beam commissioning
- 3. RI & experimental systems
- 4. Summary
 - Ideas for early-time experiments with light stable-ion beams

Part 1.

Overview of the RAON construction project

RAON Rare Isotope Science Project (RISP)

- Goal: To build a heavy-ion accelerator complex RAON for rare isotope science research
 - RAON: Rare isotope Accelerator complex for ON-line experiments
- Budget: Total ~U\$ 1.4 B for phase I
 - Accelerator & experimental facilities: ~U\$ 500 M
 - Civil engineering & conventional facilities: ~U\$ 900 M, including ~U\$ 270 M for purchasing land
- Project period: 2011-2022 (1st phase), 2023-2025 (R&D for 2nd phase to develop high-energy Linac)

System installation project

Development, installation, and commissioning of the accelerator systems that provides the highenergy (200 MeV/u) and high-power (400 kW) heavy-ion beams

Facility construction project

Construction of the research and support facility to ensure the stable operation of the heavy-ion accelerator, experimental systems, and to establish a comfortable research environment in Korea

- Providing high-quality RI beams by ISOL & IF ISOL: direct fission of ²³⁸U by 70 MeV proton beams IF: 200 MeV/u ²³⁸U (intensity: 8.3 pµA)
- Providing high-intensity neutron-rich beams

For example, ^{132}Sn with energy up to 250 MeV/u and intensity up to 10^9 particles per second

Providing more exotic RI beams

Combination of ISOL and IF

RAON Layout

NuSYM23 @ GSI

RAON Layout

SCL1 postponed

ISOL/ECR

NDPS

111

Cryogenic facility

Kobra

LAMPS

NuSYM23 @ GSI

ISOL system

μSR

RIB production methods at RAON

-			
	KoBRA	ISOL	IF separator
RIB production & acceleration mode	ECR (SIB) → SCL3 → KoBRA Prod. Target (RIB)	Cyclotron (p) \rightarrow TIS (RIB) \rightarrow SCL3	ECR (SIB) / ISOL (RIB) \rightarrow SCL3 \rightarrow SCL2 \rightarrow IF (RIB)
Production mechanism	Direct & multi-nucleon transfer reactions	p induced U fission	PF, U fission
RIB energy	< a few tens of MeV/u	> a few keV/u	< a few hundreds of MeV/u

RAON will eventually combine ISOL and IF to access more neutron-rich region of the nuclear chart.

NUSYM₂₃

Part 2.

Accelerator systems

RAON Accelerator system (Overview of SC Linacs)

SCL3 (Phase I)

SCL2 (Phase II)

RAON Injector system

- Two ECR IS's
 - 14.5 GHz ECR ion source
 - 28 GHz superconducting ECR ion source
- LEBT (E = 10 keV/u)
 - 10 keV/u, Dual bending magnet
 - Chopper & Electrostatic quads, Instrumentation
- RFQ (E = 500 keV/u)
 - 81.25 MHz, Transmission efficiency > 95%
 - CW RF power 94 kW (SSPA: 150 kW)
- MEBT (E = 500 keV/u)
 - Four RF bunchers (SSPA: 20, 15, 2 X (4 kW))
 - Simple quadrupole magnets, Instrumentation

Beam commissioning in Oct. 2020

Ar⁸⁺ 10µA @ Beam Viewer('21)

NuSYM23 @ GSI

NUSYM₂₃

GSI

RAON SRF test facility and cryoplants

- Performance test of SCL2 and SCL3 cavities and cryomodules at cryogenic temperature
- Onsite test facility: 3 VT pits with 3 cavities per pit + 3 HT bunkers
- RAON cavities: QWR (81.25 MHz), HWR (162.5 MHz) and SSR1/SSR2 (325 MHz)

SCL3 cryoplant (4.2 kW @ 4.5 K)

Compressors and Oil Removal System (WCS)

Cold Box(CB)

Compressors and Oil Removal System (WCS)

SCL2 cryoplant (13.5 kW @ 4.5 K)

Cold Box (CB) (Left warm side, right – cold side)

• SCL3 cryoplant and cryogenic distribution system were commissioned in August 2022.

18-22 September 2023

NuSYM23 @ GSI

RAON Assembly of SCL3

- Cryomodules (CM) & warm sections were assembled in the clean booth in the tunnel.
- Total counts of particles for the size larger than 0.5 μ m/10 minutes were less than 30.
- Installation was completed in 2021 and beam commissioning was finished in May 2023.
- \downarrow Cryogenic distribution to cryomodules

↓ QWR+HWR (2021)

 \leftarrow CM/cryogenic control rack and SSPA

RIB Accelerator Facility

The 1st SCL3 beam commissioning (Oct. 7, 2022)

 Ar⁹⁺ beams were accelerated by QWR #1~#5.

RIB Accelerator Facility

The 2nd SCL3 beam commissioning (Dec. 16, 2022)

NuSYM23 @ GSI

RIB Accelerator Facility

The 3rd SCL3 beam commissioning (May 23, 2023)

- Ar⁹⁺ beams accelerated by entire SCL3(QWR+HWR) on May 23.
- Ar⁹⁺ beams delivered to the KoBRA target on May 31.
 → First RIBs were produced by Ar + C & transportated to F3 of KoBRA.
- SCL3 warm up and maintenance started from June.
- Plan to deliver Ar beams to KoBRA for experiments for a short period in early 2024.

Part 3.

RI & experimental systems

RAON Overview of RI & experimental systems

NuSYM23 @ GSI

NUSYM₀23

GSI

RAON ISOL system

- Driver beam: p, $35 \le K \le 70$ MeV up to 70 kW
- Target: SiC, BN, MgO, LaC₂, UC_x, CaO, BeO etc.
- Ion Source: Surface, RILIS, Plasma

- RIB: $6 \le A \le 250$, $10 \le K \le 80$ keV, 10^8 pps (Sn), Purity > 90% @ Exp.
- Incident to RFQ of post accelerator with 10 keV/u
- Full remote maintenance system with TIS modularization

- In Dec. 2021, ISOL beamlines were commissioned with a Cs source.
 - Horizontal beam size ${\sim}2$ mm (2\sigma) at F2
 - Mass resolving power of pre-mass separator \sim 1,000 (2 σ)

NuSYM23 @ GSI

RAON ISOL system

NUSYM₂₃

R S I

RAON Cyclotron

- Specifications
 - Proton beams at 35~70 MeV
 - Maximum beam current: 1 mA (currently at 0.75 mA)
 - Two beam lines to the ISOL TIS bunker

• History

- Jun. 2019: Contract
- Apr. 2020: Design finalized
- Jun. 2021: Factory Acceptance Test (FAT)
- Aug. 2021: Shipping
- Nov. 2021~Apr. 2022: Installation
- Oct. 2022: Site Acceptance Test (SAT)

Cyclotron

Cyclotron beam line installation

NuSYM₀23

GSI

RAON ISOL system

• First RI production and transportation by the ISOL system was demonstrated using SiC.

- Production and measurement of half-lives of Na isotopes (21,22,24,25 Na) on March 3, 2023
- Second RI production test produced ^{26m}Al in addition to Na isotopes on May 23, 2023.

- Experimental conditions
 - Proton beam: 70 MeV, 1.2 μ A
 - SiC target temperature
 - \sim 1,400°C (Ta heater ohmic heating 1.8 kW)

 \downarrow Measured RIs until June 1

	Si- 22	Si- 23	Si- 24	Si- 25	Si- 26	Si- 27	Si- 28	Si- 29	Si- 30
	29ms	42.3ms	140.5ms	220ms	2.2453s	4.15s	92.223	4.685	3.092
	Al- 21	Al- 22	Al- 23	Al- 24	Al- 25	Al- 26	Al- 27	Al- 28	Al- 29
	p 6.4E-22s	91.1ms	446ms	2.053s	7.183s	71.7E5y	100	2.245m	6.56m
				+150.9ms		Sec. 1			
Mg- 19	Mg- 20	Mg- 21	Mg- 22	Mg- 23	Mg- 24	Mg- 25	Mg- 26	Mg- 27	Mg- 28
4.0ps	90.8ms	122ms	3.8755s	11.317s	78.99	10.00	11.01	9.458m	20.915h
Na- 18	Na- 19	Na- 20	Na- 21	Na- 22	Na- 23	Na- 24	Na- 25	Na- 26	Na- 27
1.3E-21s	p 150ns	447.9ms	22.49s	2.6027y	100	14.997h	59.1s	1.077s	301ms
				\smile		+20.18m			
Ne- 17	Ne- 18	Ne- 19	Ne- 20	Ne- 21	Ne- 22	Ne- 23	Ne- 24	Ne- 25	Ne- 26
109.2ms	1.6654s	17.22s	90.48	0.27	9.25	37.24s	3.38m	602ms	197ms

18-22 September 2023

RAON KoBRA

- Korea Broad acceptance Recoil spectrometer & Apparatus
- Spectrometer for nuclear structure and nuclear astrophysics using stable or RI beams in the energy range of 1~40 MeV/u
 - Stable ions up to ~40 MeV/u from ECR IS (\leq 40 MeV/u for $A \leq$ 40 and \leq 20 MeV/u for $A \geq$ 100)
 - RIB production at a few MeV/u using the stable ion beams from ECR IS
 - Role of the recoil mass separator for RIBs from ISOL at beam energies less than a few MeV/u

Magnetic rigidity	0.25 – 3.0 Tm			
Angular acceptance	80 mrad (H) 200 mrad (V)			
Momentum acceptance	8%			
Momentum resolving power at F1	2100 at 2 mm beam size			
Mass resolving power (with Wien filter)	750 at 2 mm beam size			
Beam swinger	up to 12 degree for 3 Tm			
High order correction	up to 4 th order			
Degrader at F1	Homogeneous			

RAON KoBRA

SNACK: Silicon detector array for Nuclear AstrophysiCs study at KoBRA

RAON NDPS

Beam species

- Nuclear Data Production System
 - d+C for white neutrons
 - n intensity at the end of the collimator $\simeq 10^8$ neutrons/cm²/sec for 10 pµA
 - p+Li for monoenergetic neutrons
 - n intensity at the end of the collimator $\simeq 10^5$ neutrons/cm²/sec for 10 pµA

proton, deuteron

$\begin{array}{c c} \widehat{\mathbf{Y}}_{\mathbf{H}} & \overset{80}{} & \\ \hline \mathbf{Neutron yield at around 0^{\circ} (\pm 2.5^{\circ})} & \\ \widehat{\mathbf{Y}}_{\mathbf{H}} & \overset{2}{} & \\ \hline \mathbf{Neutron yield at around 0^{\circ} (\pm 2.5^{\circ})} & \\ \hline \\$
$\int_{0}^{10} \int_{0}^{10} \int_{0}^{10$
Quadrupole magnet
Steerer magnet Beam Diagnostic Chamber Monoenergetic Neutron Production Target Chamber (Li target) Dipole magnet White Neutron Production Target Chamber (C target) Neutron Collimator Neutron Seam Dump
NuSYM23 @ GSI 24

Maximum 49 MeV/u for deuteron 83 MeV for proton Beam energy Maximum $\sim 10 \ \mu A$ Beam current C for white neutron Target Li for monoenergetic neutron **Bunch** length \sim 1 ns (FWHM) Repetition rate 1 – 200 kHz Flight length 5 – 40 m $\sim 10^8 \, \text{cm}^{-2} \, \text{sec}^{-1}$ at 5 m Neutron flux

18-22 September 2023

NUSYM-23

RAON NDPS

October 2020

July 2022

RAON LAMPS

- Large Acceptance Multi-Purpose Spectrometer
 - Beam energies up to 250 MeV/u for ¹³²Sn with an intensity as large as 10⁸ pps
 - Comprehensive detector system to investigate the nuclear equation of state (EoS) and symmetry energy
 - All detector components and magnet were already developed, manufactured, and assembled.
 - Integration and commissioning of the whole LAMPS system is being planned at the end of 2023.

RAON LAMPS

1000

2249,85

1000

Quadrupole magnets

IF

×

LAMPS 28,400 Solenoid 7350 6950 450,00 1918,76 1631,24 3118,76 2200 1000 900 1000 1000 250 • TPC

Quadrupole magnets

Wall

Viewer Chamber

GSI

Beamline (Left: IF side, Right: LAMPS side)

NuSYM₀23

Installation of TPC inside the magnet

Beam Diagnostic Chamber

Neutron detector array

 $(B_{max} = 1 T)$ 18-22 September 2023

NuSYM23 @ GSI

ToF & Trigger array (BTOF/FTOF)

BDC (left) & SC (right) in beam diagnostic vacuum chamber

RAON Summary of status

- Injector beam commissioning
 - Measurement of the beam parameters (emittance and beam size, etc.)
 - Controlling LEBT and MEBT beam optics as needed
 - Achieved beam transmission of 95% max (routinely > 90%)
 - Machine verification including diagnostics devices
- Linac (SCL3) beam commissioning
 - Ar⁹⁺ beams were, for the first time, delivered to the KoBRA production target on May 31, 2023.
 - As soon as the cryoplants started operation, it took just a month to cool the linac and transmit the RF.
 - SCL3 warm-up and maintenance is planned from June 2023.

Constraints from RAON

- Very limited beam (Ar) delivery to KoBRA for experiments is expected in early 2024
- Light RIB (e.g., Na or Al isotopes) from ISOL may be available in 2025.
- The beam energy will be \sim 20 MeV/u until approximately 2030 when SCL2 is completed.
- The first PAC is expected in the second half of 2024.
- The high-energy accelerator SCL2 will be available in 2030 or later.

NUSYM-23

RAON Proposed experiments at KoBRA with stable ion beams in early phase

- Study on neutron-deficient nuclei using proton-induced fusion-evaporation
- 3*n* fusion-evaporation reactions to study MEDs in $T_z = -3/2$ nuclei
- Fusion reaction studies related to stellar evolution
- Lifetime of isotopes near doubly magic N = Z nuclei ⁴⁰Ca
- Optical model potential studies using stable beams at KoBRA
- Decay spectroscopy and fast-timing measurements by using KHALA at RAON
- High-resolution in-beam γ -ray experiments: Internal conversion electron spectroscopy
- Spectroscopy of proton, neutron and alpha emitters
- RI experiments probing isospin symmetry
- Measurement of RI production cross sections
- Symmetry energy at low densities using isospin mixing in fusion reactions
- Cluster structure of nuclei