Current status of NICER's measurements of the neutron star masses and radii and future perspectives

Sebastien Guillot

Inner Crust

Outer

<u>What masses and radii did NICER measure?</u> <u>What else did we learn from NICER?</u> <u>What are the post-NICER perspectives</u>?

The equation of state $P(\rho)$ of the unknown interior of neutron stars can be determined with measurements of $M_{NS} - R_{NS}$ with a few % precision.

The NICER mission observes the X-ray emission from millisecond pulsars

 $B \sim 10^8 - 10^9 G$ $P_{spin} \sim 2 - 5$ msec

Old fast rotating neutron stars

Credits: A. Bilous

Millisecond pulsar exhibits hot thermal emission originating from the surface at the magnetic poles

Strong gravity permits seeing beyond the hemisphere of the neutron star, leaving imprints on the lightcurves of millisecond pulsars.

Credits: S. Morsink

NICER has provided beautiful data sets to perform pulse profile modelling.

Bogdanov, SG et al. (2019a)

NS properties inference (Likelihood statistical sampling)

Mass, Radius, EOS

Analysing the pulse profile of millisecond pulsars requires modelling the emerging emission and the corresponding emission regions (hot spots).

Zavlin et al. (1996)

In the following, we used Hydrogen atmosphere models

The hot spots are geometrically described as a combination of circles

The high background in the NICER data also needs to be modelled (or estimated).

NS properties inference (Likelihood statistical sampling)

Mass, Radius, EOS

The NICER Science Team published the results for two pulsars.

The two independent analyses for each target are consistent

PSR J0030+0451

- Riley et al. 2019
- Miller et al. 2019

◆ <u>PSR J0740+6620</u>

- Riley et al. 2021
- Miller et al. 2021

See also additional analyses in Salmi et al. 2022, 2023 Vinciguerra et al. 2023a, 2023b See also a third independent re-analysis of PSR J0030+0451 by Afle et al. 2023 finding consistent results

These results are also consistent with previous measurements.

The two independent analyses for each target are consistent

- PSR J0030+0451
 - Riley et al. 2019
 - Miller et al. 2019
- PSR J0740+6620
 - Riley et al. 2021
 - Miller et al. 2021

<u>Cold Surface of MSP</u>: Gonzalez-Caniulef et al. 2019 <u>Multiple quiescent LMXB</u>: Baillot-d'Etivaux et al. 2019

Salmi et al., 2022

~ 12 km

But statistical

arguments can be

used to reject

some models

Salmi et al., 2022

The geometry was not as simple as initially anticipated!

- 2.2 km

The choice of the emergent emission model matters too!

Several arguments favour a hydrogen composition of the pulsar's atmosphere

Vinciguerra et al. 2023A, 2023B studied the effects of:

- Adding data from other instruments (XMM-Newton) for PSR J0030+0451
- Different geometries (more details that in Riley et al. 2019)
- Different options of the sampler (resolution, convergence, etc...)
- Multimodes of the parameter space

Measurements of a dozen of NS radii with few percent level precision will require the next generation of observatories!

New-ATHENA

- Sensitivity: about x5 that of NICER
- Time resolution:
- Low-background: ~ 0.001 c/s

KIFU

ATHENA

Future prospects for pulse profile modelling with new-Athena are quite promising.

Simulations of PSR J0740+6620 with P_{spin} = 2.88 msec and d=1.2 kpc

 $R{\sim}11.5$ km, M=2.08 M_{\odot} with 2 circular hot spots Simulation of 500 ksec observations

To simulate a bright pulsar, I used a simulation of PSR J0740+6620 (i.e., same parameters), but at a distance of d=200 pc

0.0

0.4

0.6

Phase

1.0

To be investigated in more details

For faint MSPs, the choice of atmosphere may affect the radius measured.

<u>New-ATHENA will help</u> <u>solve this degeneracy</u>

<u>ATHENA Simulations of Hydrogen</u> <u>atmosphere data set, and run the inference</u> <u>with Helium atmosphere model</u>

- In(Bayes Factor) ~ 55−90
 - Highly significant !

Conclusions

- NICER has <u>demonstrated of the feasibility</u> of measuring the radii of two millisecond pulsars, and a few more measurement are expected soon. But it also revealed new observational and modelling challenges.
- New-Athena has the potential to bring us much closer to <u>understanding the interior of</u> <u>neutron stars</u>, with its numerous advantages:
 - High effective area
 - Very low (and known!) background
 - Good timing resolution
 - Unmatched capabilities compared to current observatories:

Open questions:

- Can New-Athena distinguish between different surface spot patterns ?
- How does New-Athena compare to other proposed X-ray missions ?

CompARE

- A repository of observational constraints to the EOS
 Mass, radius, tidal deformability, etc.
- Facilitating the distribution of these constraints by observers to nuclear physics modellers.
- Explicit all model dependencies and assumptions possibly affecting results.
- Encourage observers to provide machine-readable outputs (under a uniform format).

CompARE – List of constraints

CompARE – List of constraints

More info	Source name	Database Class	Method	Method details	Constraint Type	Constraint Version	Constraint Variable	Model dependencies	Analysis assumptions	Reference	Download	
+	PSR J0437-4715	Cold MSP	Thermal emission	Spectral fitting (FUV and Xray data)	MCMC samples	1	M-R	<u>atmosphere</u> : Gonzalez2019 <u>absorption</u> : tbabs <u>redenning</u> : Clayton2003 <u>hot spots model</u> : ignored	Atmosphere Composition: helium Magnetic field: non- magnetic Rotation: non-rotating Emitting fraction: uniform full surface Interstellar medium: solar abundances <u>Prior</u> : distance prior <u>Prior</u> : mass prior	<u>Gonzalez-</u> Canuilef 2019	ł	

CompARE – Details of an entry

CompARE	Home page	Data table	Add entry	More info	Login						
PSR J0437-4715 Cold_MSP-PSRJ0437-4715-2019-massradius-helium-1.npy											
<section-header><section-header><section-header><section-header><section-header><text><text><text><text><text><text></text></text></text></text></text></text></section-header></section-header></section-header></section-header></section-header>	Atmosphere Composition: helium At the surface of a neutron star, eler layer of a NS is on the order of a few composition, being that of the lighter system, the next expected element i accreted only Helium from a comparimary put some uncertainties on the si interstellar medium, diffuse nuclear I 2003, 2004), and spallation of heaving 19920, 1987ApJ313718R 1992ApJ3841438 2003ApJ585464C 2004ApJ616L.147C Magnetic field: non-magnetic This analyses also assume emission typically measured for MSPs, specifi atmosphere model is that of a non-na approximation as B-field effect (mod) (Karninker et al., 1983; Zavlin et al., magnetic loop near the NS surface. 1983Apd&SS91167K 1996AsA3151417 2019MNRAS.490.5848G Entation: non-rotating The relativistic effects of rotation on analysis. However, the effects on the PSR J0437-4715 (173.6 Hz), see Bar 2015ApJ79922B Emitting fraction: uniform full surfar The analysis assumes that the full surfar The analysis assumes that the full surfar	ments stratify on time scales of minutes/hours 1987). Also, the thickness of the last scattering w cm. Therefore, it is common to assume a single st element. If no Hydrogen is present in the is Helium, which is a possibility if the NS has nion star. Other effects are in competition and surface composition, namely, accretion from the burning of light of H into He (Chang & Bildsten ier elements into lighter ones (Bildsten et al. n from a low-magnetic field neutron stars (as fically B_dip ~ 2.8e8 G for PSR J0437-4715). The magnetised atmosphere, which is a good dified opacities) become important above 1e10 G 1996). However, this neglects potential high- the emergent spectrum are neglected in this e radius are < 1 % at the rotational frequency of aubock et al. 2015. Face surface is emitting uniformly at the same in of the hot spots).	<section-header>Source info</section-header>	<section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header>							
	Prior: distance prior				CONTRACTOR OF						

Lorentz Center Workshop (proposed)

eXtreme Matter in eXtreme Stars

Tentatively in May-June 2024