

Effects and relevance of off-shell transport

Elena Bratkovskaya

(GSI, Darmstadt & Uni. Frankfurt)

Taesoo Song (GSI) + PHSD team

NuSym23: XIth International Symposium on Nuclear Symmetry Energy GSI, Darmstadt, 18-22 September 2023

Dense and hot matter created in HICs

Time evolution of baryon density ρ

Energy density vs. ρ/ρ_0

Large energy and baryon densities (even above critical $\varepsilon > \varepsilon_{crit} \sim 0.5$ GeV/fm³) are reached in the central reaction volume at CBM and BM@N/NICA energies (> 5 A GeV) \rightarrow a phase transition to the QGP

- □ At SIS energies: baryon density in central A+A collisions at 1.25 A GeV:
- increases with nuclear size up to 2.5 ρ₀
- the reaction time is larger for heavy systems
- → Highly dense matter is created already at SIS energies!

History: Semi-classical BUU equation

Boltzmann-Uehling-Uhlenbeck equation (non-relativistic formulation)

- propagation of particles in the self-generated Hartree-Fock mean-field potential U(r,t) with an on-shell collision term:

Ludwig Boltzmann

$$\frac{\partial}{\partial t} f(\vec{r}, \vec{p}, t) + \frac{\vec{p}}{m} \vec{\nabla}_{\vec{r}} f(\vec{r}, \vec{p}, t) - \vec{\nabla}_{\vec{r}} U(\vec{r}, t) \vec{\nabla}_{\vec{p}} f(\vec{r}, \vec{p}, t) = \left(\frac{\partial f}{\partial t}\right)_{coll}$$

collision term: elastic and inelastic reactions

 $f(\vec{r}, \vec{p}, t)$ is the single particle phase-space distribution function

- probability to find the particle at position r with momentum p at time t
- □ self-generated Hartree-Fock mean-field potential:

$$U(\vec{r},t) = \frac{1}{(2\pi\hbar)^3} \sum_{\beta_{occ}} \int d^3r' d^3p \ V(\vec{r} - \vec{r}',t) \ f(\vec{r}',\vec{p},t) + (Fock \ term)$$

Collision term for 1+2→3+4 (let's consider fermions) :

$$I_{coll} = \frac{4}{(2\pi)^3} \int d^3 p_2 d^3 p_3 \int d\Omega / v_{12} / \delta^3 (\vec{p}_1 + \vec{p}_2 - \vec{p}_3 - \vec{p}_4) \cdot \frac{d\sigma}{d\Omega} (1 + 2 \rightarrow 3 + 4) \cdot P$$

Probability including Pauli blocking of fermions:

$$P = f_3 f_4 (1 - f_1) (1 - f_2) - f_1 f_2 (1 - f_3) (1 - f_4)$$

Gain term: $3+4 \rightarrow 1+2$ Loss term: $1+2 \rightarrow 3+4$

From weakly to strongly interacting systems

In-medium effects (on hadronic or partonic levels!) = changes of particle properties in the hot and dense medium

Examples: hadronic medium - vector mesons, strange mesons, baryons

QGP - dressing of partons

Many-body theory:

Strong interaction → large widths → broad spectral functions → quantum objects

Semi-classical on-shell BUU: applies for small collisional width, i.e. for a weakly interacting systems of particles

- How to describe the dynamics of broad strongly interacting quantum states in transport theory?
 - semi-classical BUU

first order gradient expansion of quantum Kadanoff-Baym equations

generalized transport equations based on Kadanoff-Baym dynamics

Dynamical description of strongly interacting systems

Quantum field theory ->

Kadanoff-Baym dynamics for resummed single-particle Green functions S[<]

$$\hat{S}_{0x}^{-1} S_{xy}^{<} = \Sigma_{xz}^{ret} \odot S_{zy}^{<} + \Sigma_{xz}^{<} \odot S_{zy}^{adv}$$

(1962)

Green functions S</ self-energies Σ :

$$iS_{xy}^{<} = \eta \langle \{ \Phi^{+}(y) \Phi(x) \} \rangle$$

$$iS_{xy}^{>} = \langle \{ \Phi(y) \Phi^{+}(x) \} \rangle$$

$$iS_{xy}^{c} = \langle T^{c} \{ \Phi(x) \Phi^{+}(y) \} \rangle - causal$$

$$iS_{xy}^{a} = \langle T^{a} \{ \Phi(x) \Phi^{+}(y) \} \rangle - anticausal$$

Integration over the intermediate spacetime

$$S_{xy}^{ret} = S_{xy}^{c} - S_{xy}^{<} = S_{xy}^{>} - S_{xy}^{a} - retarded$$

$$\hat{S}_{\theta x}^{-1} \equiv -(\hat{\sigma}_{x}^{\mu} \hat{\sigma}_{\mu}^{x} + M_{\theta}^{2})$$

$$S_{xy}^{adv} = S_{xy}^{c} - S_{xy}^{>} = S_{xy}^{<} - S_{xy}^{a} - advanced$$

$$\eta = \pm 1(bosons / fermions)$$

$$T_{\theta}^{a}(T_{\theta}^{c}) - (anti-)time - ordering operator$$

$$T^{a}(T^{c})-(anti-)time-ordering\ operator$$

Leo Kadanoff

Gordon Baym

^{1&}lt;sup>st</sup> application for spacially homodeneous system with deformed Fermi sphere: P. Danielewicz, Ann. Phys. 152, 305 (1984); ... H.S. Köhler, Phys. Rev. 51, 3232 (1995); ...

From Kadanoff-Baym equations to generalized transport equations

After the first order gradient expansion of the Wigner transformed Kadanoff-Baym equations and separation into the real and imaginary parts one gets:

Generalized transport equations (GTE):

drift term

Vlasov term

$$\diamondsuit \left\{ P^2 - M_0^2 - Re\Sigma_{XP}^{ret} \right\} \left\{ S_{XP}^{<} \right\} =$$

backflow term

$$\diamondsuit \left\{ \left. \Sigma_{XP}^{<} \right. \right\} \left. \left\{ ReS_{XP}^{ret} \right. \right\}$$

collision term = ,gain' - ,loss' term

$$\diamondsuit \{ P^2 - M_0^2 - Re\Sigma_{XP}^{ret} \} \{ S_{XP}^{<} \} - \diamondsuit \{ \Sigma_{XP}^{<} \} \{ ReS_{XP}^{ret} \} = \frac{i}{2} [\Sigma_{XP}^{>} S_{XP}^{<} - \Sigma_{XP}^{<} S_{XP}^{>}]$$

Backflow term incorporates the off-shell behavior in the particle propagation ! vanishes in the quasiparticle limit $A_{XP} \rightarrow \delta(p^2-M^2)$

- \square GTE: Propagation of the Green's function $iS_{XP}=A_{XP}N_{XP}$, which carries information not only on the number of particles (N_{XP}) , but also on their properties, interactions and correlations (via A_{XP})

$$lacksquare$$
 Spectral function: $A_{XP}=rac{\Gamma_{XP}}{(P^2-M_0^2-Re\Sigma_{XP}^{ret})^2+\Gamma_{XP}^2/4}$

Reaction rate of particle (at space-time position X):

$$\Gamma_{XP} = -Im \ \Sigma_{XP}^{ret} = 2 \ p_{\theta} \Gamma$$
 where Γ is a ,width' of spectral function

4-dimentional generalizaton of the Poisson-bracket:

W. Botermans, R. Malfliet, Phys. Rep. 198 (1990) 115

$$\Diamond \{F_1\} \{F_2\} := \frac{1}{2} \left(\frac{\partial F_1}{\partial X_{\mu}} \frac{\partial F_2}{\partial P^{\mu}} - \frac{\partial F_1}{\partial P_{\mu}} \frac{\partial F_2}{\partial X^{\mu}} \right)$$

General testparticle off-shell equations of motion

W. Cassing, S. Juchem, NPA 665 (2000) 377; 672 (2000) 417; 677 (2000) 445

 \square Employ testparticle Ansatz for the real valued quantity $i S_{XP}$

$$F_{XP} = A_{XP} N_{XP} = i S_{XP}^{<} \sim \sum_{i=1}^{N} \delta^{(3)}(\vec{X} - \vec{X}_i(t)) \delta^{(3)}(\vec{P} - \vec{P}_i(t)) \delta(P_0 - \epsilon_i(t))$$

insert in generalized transport equations and determine equations of motion!

→ Generalized testparticle Cassing-Juchem off-shell equations of motion for the time-like particles:

$$\begin{split} \frac{d\vec{X}_i}{dt} &= \quad \frac{1}{1-C_{(i)}} \frac{1}{2\epsilon_i} \left[2\,\vec{P}_i + \vec{\nabla}_{P_i} \, Re \Sigma_{(i)}^{ret} + \underbrace{\frac{\epsilon_i^2 - \vec{P}_i^2 - M_0^2 - Re \Sigma_{(i)}^{ret}}{\Gamma_{(i)}}}_{\Gamma_{(i)}} \vec{\nabla}_{P_i} \Gamma_{(i)} \right], \\ \frac{d\vec{P}_i}{dt} &= \quad -\frac{1}{1-C_{(i)}} \frac{1}{2\epsilon_i} \left[\vec{\nabla}_{X_i} \, Re \Sigma_i^{ret} + \underbrace{\frac{\epsilon_i^2 - \vec{P}_i^2 - M_0^2 - Re \Sigma_{(i)}^{ret}}{\Gamma_{(i)}}}_{\Gamma_{(i)}} \vec{\nabla}_{X_i} \Gamma_{(i)} \right], \\ \frac{d\epsilon_i}{dt} &= \quad \frac{1}{1-C_{(i)}} \frac{1}{2\epsilon_i} \left[\frac{\partial Re \Sigma_{(i)}^{ret}}{\partial t} + \underbrace{\frac{\epsilon_i^2 - \vec{P}_i^2 - M_0^2 - Re \Sigma_{(i)}^{ret}}{\Gamma_{(i)}}}_{\Gamma_{(i)}} \frac{\partial \Gamma_{(i)}}{\partial t} \right], \end{split}$$

$$\mathbf{with} \quad F_{(i)} \equiv F(t, \vec{X}_i(t), \vec{P}_i(t), \epsilon_i(t))$$

$$C_{(i)} &= \frac{1}{2\epsilon_i} \left[\frac{\partial}{\partial \epsilon_i} \, Re \Sigma_{(i)}^{ret} + \underbrace{\frac{\epsilon_i^2 - \vec{P}_i^2 - M_0^2 - Re \Sigma_{(i)}^{ret}}{\Gamma_{(i)}}}_{\Gamma_{(i)}} \frac{\partial}{\partial \epsilon_i} \Gamma_{(i)} \right] \end{split}$$

Note: the common factor $1/(1-C_{(i)})$ can be absorbed in an ,eigentime of particle (i)!

On-shell limits

$$\Box$$
 $\Gamma(X,P) \rightarrow 0$

$$A_{XP} = \frac{\Gamma_{XP}}{(P^2 - M_0^2 - Re\Sigma_{XP}^{ret})^2 + \Gamma_{XP}^2/4}$$

quasiparticle approximation:

$$A_{XP} = 2 p \delta(P^2 - M_0^2)$$

\Box $\Gamma(X,P)$ such that

$$\nabla_{\mathbf{X}} \Gamma = \mathbf{0} \quad \text{and} \quad \nabla_{\mathbf{P}} \Gamma = \mathbf{0}$$

E.g.:
$$\Gamma = \text{const}$$

 $\Gamma = \Gamma_{\text{vacuum}} (M)$

,Vacuum' spectral function with constant or mass dependent width Γ :

i.e. spectral function A_{XP} does NOT change the shape (and pole position) during propagation through the medium

In on-shell limits the ,backflow term' - which incorporates the off-shell behavior in the particle propagation - vanishes!

$$\begin{split} \frac{d\vec{X}_i}{dt} &= \frac{1}{1-C_{(i)}} \frac{1}{2\epsilon_i} \left[2 \vec{P}_i + \vec{\nabla}_{P_i} Re \Sigma_{(i)}^{ret} + \frac{\epsilon_i^2 - \vec{P}_i^2 - M_0^2 - Re \Sigma_{(i)}^{ret}}{\Gamma_{(i)}} \vec{\nabla}_{P_i} \Gamma_{(i)} \right], \\ \frac{d\vec{P}_i}{dt} &= -\frac{1}{1-C_{(i)}} \frac{1}{2\epsilon_i} \left[\vec{\nabla}_{X_i} Re \Sigma_i^{ret} + \frac{\epsilon_i^2 - \vec{P}_i^2 - M_0^2 - Re \Sigma_{(i)}^{ret}}{\Gamma_{(i)}} \vec{\nabla}_{X_i} \Gamma_{(i)} \right], \\ \frac{d\epsilon_i}{dt} &= \frac{1}{1-C_{(i)}} \frac{1}{2\epsilon_i} \left[\frac{\partial Re \Sigma_{(i)}^{ret}}{\partial t} + \frac{\epsilon_i^2 - \vec{P}_i^2 - M_0^2 - Re \Sigma_{(i)}^{ret}}{\Gamma_{(i)}} \frac{\partial \Gamma_{(i)}}{\partial t} \right], \end{split}$$

Hamilton equations of motion (independent on Γ) \rightarrow BUU limit

Collision term in off-shell transport models

Collision term for reaction 1+2->3+4:

$$\begin{split} \underline{I_{coll}(X,\vec{P},M^2)} &= Tr_2Tr_3Tr_4\underline{A(X,\vec{P},M^2)}A(X,\vec{P}_2,M_2^2)A(X,\vec{P}_3,M_3^2)A(X,\vec{P}_4,M_4^2) \\ &|\underline{G((\vec{P},M^2)+(\vec{P}_2,M_2^2)\rightarrow(\vec{P}_3,M_3^2)+(\vec{P}_4,M_4^2))|_{\mathcal{A},\mathcal{S}}^2} \ \delta^{(4)}(P+P_2-P_3-P_4) \\ &[N_{X\vec{P}_3M_3^2}\,N_{X\vec{P}_4M_4^2}\,\bar{f}_{X\vec{P}M^2}\,\bar{f}_{X\vec{P}_2M_2^2}-N_{X\vec{P}M^2}\,N_{X\vec{P}_2M_2^2}\,\bar{f}_{X\vec{P}_3M_3^2}\,\bar{f}_{X\vec{P}_4M_4^2}] \\ &\text{, gain' term} \end{split}$$

with $\bar{f}_{X\vec{P}M^2} = 1 + \eta N_{X\vec{P}M^2}$ and $\eta = \pm 1$ for bosons/fermions, respectively.

The trace over particles 2,3,4 reads explicitly

for fermions for bosons

$$Tr_2 = \sum_{\sigma_2, \tau_2} \frac{1}{(2\pi)^4} \int d^3P_2 \sqrt{\frac{dM_2^2}{\vec{P}_2^2 + M_2^2}}$$
 additional integration
$$Tr_2 = \sum_{\sigma_2, \tau_2} \frac{1}{(2\pi)^4} \int d^3P_2 \sqrt{\frac{dP_{0,2}^2}{2}}$$

The transport approach and the particle spectral functions are fully determined once the in-medium transition amplitudes G are known in their off-shell dependence!

Mean-field potential in off-shell transport models

■ Many-body theory: Interacting relativistic particles have a complex self-energy:

$$\Sigma_{XP}^{ret} = Re \, \Sigma_{XP}^{ret} + i \, Im \, \Sigma_{XP}^{ret}$$

The neg. imaginary part $\Gamma_{XP} = -Im \Sigma_{XP}^{ret} = 2 p_{\theta} \Gamma$ is related via the width $\Gamma = \Gamma_{coll} + \Gamma_{dec}$ to the inverse livetime of the particle $\tau \sim 1/\Gamma$

 $lue{}$ The collision width Γ_{coll} is determined from the loss term of the collision integral I_{coll}

$$-I_{coll}(loss) = \Gamma_{coll}(X, \vec{P}, M^2) N_{X\vec{P} M^2}$$

☐ By dispersion relation we get a contribution to the real part of self-energy:

$$Re \Sigma_{XP}^{ret}(p_0) = P \int_0^\infty dq \frac{Im \Sigma_{XP}^{ret}(q)}{(q - p_0)}$$

which gives a mean-field potential U_{XP} via:

$$Re \, \Sigma_{XP}^{ret}(p_0) = 2 p_0 U_{XP}$$

→ The complex self-energy relates in a self-consistent way to the self-generated mean-field potential and collision width

^{*} Cf. Giessen group: J. Lehr et al., NPA703 (2002) 393 , Nuclear matter spectral functions by transport theory'

Parton-Hadron-String-Dynamics (PHSD)

Initial A+A collision

Partonic phase

Hadronization

Hadronic phase

PHSD is a non-equilibrium microscopic transport approach for the description of strongly-interacting hadronic and partonic matter created in heavy-ion collisions

Dynamics:

Juchem transport equations derived from Kadanoff-Baym many-body theory

Generalized off-shell collision integral: for n ←→ m selected reactions (for strangeness, anti-baryons, deuteron production)

QGP:

strongly interacting quasiparticles (quarks and gluons) with dynamical temperature and density spectral functions

In-medium transition rates: G-matrix approach

Need to know in-medium transition amplitudes G and their off-shell

dependence $|G((\vec{P}, M^2) + (\vec{P}_2, M_2^2) \rightarrow (\vec{P}_3, M_3^2) + (\vec{P}_4, M_4^2)|$

Coupled channel G-matrix approach

Transition probability:

$$P_{1+2\to 3+4}(s) = \int d\cos(\theta) \, \frac{1}{(2s_1+1)(2s_2+1)} \sum_{i} \sum_{\alpha} G^{\dagger} G$$

with $G(p,\rho,T)$ - G-matrix from the solution of coupled-channel equations:

Meson selfenergy and spectral function

Baryons: Pauli blocking and potential dressing

For strangeness:

D. Cabrera, L. Tolos, J. Aichelin, E.B., PRC C90 (2014) 055207; W. Cassing, L. Tolos, E.B., A. Ramos, NPA727 (2003) 59;

T. Song et al., PRC 103, 044901 (2021)

Off-shell dynamics for antikaons at SIS energies

Spectral function of K⁻ within the G-matrix approach:

$$S_{\vec{K}}(k_0, \vec{k}; T) = -\frac{1}{\pi} \frac{\operatorname{Im} \Sigma_{\vec{K}}(k_0, \vec{k}; T)}{\left| k_0^2 - \vec{k}^2 - m_{\vec{k}}^2 - \Sigma_{\vec{K}}(k_0, \vec{k}; T) \right|^2}.$$

In-medium cross sections for K production and absorption are strongly modified in the medium:

1.5

 ρ/ρ_0

D. Cabrera et al., Phys.Rev.C 90 (2014) 055207

In-medium effects are mandatory for the description of experimental K spectra

1.0

1.5

 ρ/ρ_0

2.0

T. Song et al., PRC 103, 044901 (2021)

Short-lived resonances in semi-classical transport models

Spectral function of vector mesons (ρ, ω, ϕ) :

$$A(M,p,\rho) = \frac{2}{\pi} \frac{M^2 \Gamma_{tot}(M,p,\rho)}{(M^2 - M_0^2 - Re\Sigma^{ret}) + (M\Gamma_{tot}(M,p,\rho))^2},$$

width $\Gamma \sim -\text{Im } \Sigma^{\text{ret}} / M$

Example:

p-meson propagation through the medium within on-shell BUU model

→ broad in-medium spectral function does not become on-shell in vacuum by propagation within ,on-shell transport models!

eBUU: M. Effenberger et al, PRC60 (1999)

Off-shell vs. on-shell transport dynamics

Time evolution of the mass distribution of ρ and ω mesons for central C+C collisions (b=1 fm) at 2 A GeV for dropping mass + collisional broadening scenario

EB, W. Cassing, NPA 807 (2008) 214

The off-shell spectral function becomes on-shell in the vacuum dynamically by propagation through the medium within off-shell KB

Dileptons at SIS energies - HADES

\square HADES: Au+Au at 1.23 AGeV - dilepton yield dN/dM scaled with the number of $N_{\pi0}$

E. B., J. Aichelin, M. Thomere, S. Vogel, and M. Bleicher, PRC 87 (2013) 064907

Nat. Phys. 15 (2019), 1040.

PHSD: I. Schmidt, E.B., M. Gumberidze,

R. Holzmann, Phys. Rev. D 104 (2021), 015008

1.0

Advantages of Kadanoff-Baym dynamics vs Boltzmann

Kadanoff-Baym equations:

- propagate two-point Green functions $G^{<}(x,p) \rightarrow A(x,p)*N(x,p)$ in 8 dimensions $x=(t,\vec{r})$ $p=(p_0,\vec{p})$
- □ G[<] carries information not only on the occupation number N_{XP}, but also on the particle properties, interactions and correlations via spectral function A_{XP}

Boltzmann equations

- □ propagate phase space distribution function $f(\vec{r}, \vec{p}, t)$ in 6+1 dimensions
- works well for small coupling
 = weakly interacting system,
 → on-shell approach

- Applicable for strong coupling = strongly interaction system
- □ Includes memory effects (time integration) and off-shell transitions in collision term
- Dynamically generates a broad spectral function for strong coupling
- \Box KB can be solved exactly for model cases as Φ^4 theory
- KB can be solved in 1st order gradient expansion in terms of generalized transport equations (in test particle ansatz) for realistic systems of HICs

Summary

The developments in microscopic transport theory in the last decades - based on the solution of generalized transport equations as derived from Kadanoff-Baym dynamics - made it applicable for the description of strongly-interacting hadronic and partonic matter as created in heavy-ion collisions from SIS to LHC energies

Note:

for a consistent description of HICs the input from IQCD and many-body theory is mandatory:

properties of partonic and hadronic degrees-of-freedom and their in-medium interactions at finite density and temperature!

Key questions:

For a proper extraction of the EoS from a comparison of transport calculations with exp. data one has to consider that:

- 1) Hadrons modify their propertis in a hot and dense medium:
- in-medium spectral functions with complex self energies depending on density, temperature and momentum (as shown for antikaons)
- in-medium cross sections also change the dynamics and consequently mean-field potentials
 - → influence on observables yields, spectra, collective flows v_n
- Off-shell transport is MANDATORY for the proper description of observables as measured by HIC experiments!
- 2) What matter consists of?
 - i.e. what are the degrees-of-freedom at the collision energy considered (hadronic, partonic)?
- Hadron-parton matter at AGS-SPS
- Dominant partonic matter at RHIC and LHC