651 FAIR Nuclear symmetry energy EMMI from isobar collisions at RHIC HF

Fuqiang Wang Purdue University

OUTLINE

• Brief introduction

 \odot Relativistic heavy ion collisions \odot The RHIC isobar program and its physics motivation (i.e. CME)

• Byproduct of the isobar program

Symmetry energy slope parameter
 Nuclear shapes / deformation

• Summary

RELATIVISTIC HEAVY ION COLLIDER (AND THE LHC)

- RHIC: versatile, many nuclear species, lower beam-energy scan
- LHC: not as versatile, but a few species already; possible low energies

RELATIVISTIC HEAVY ION COLLISIONS

Woods-Saxon distributions

Kharzeev,Pisarski,Tytgat,PRL81(1998)512 Kharzeev, et al. NPA 803 (2008) 227 Voloshin, PRL 105 (2010) 172301

Kharzeev,Pisarski,Tytgat,PRL81(1998)512 Kharzeev, et al. NPA 803 (2008) 227 Voloshin, PRL 105 (2010) 172301

Fuqiang Wang

Kharzeev,Pisarski,Tytgat,PRL81(1998)512 Kharzeev, et al. NPA 803 (2008) 227 Voloshin, PRL 105 (2010) 172301

Kharzeev,Pisarski,Tytgat,PRL81(1998)512 Kharzeev, et al. NPA 803 (2008) 227 Voloshin, PRL 105 (2010) 172301

Same A: same strong interaction physics

 \rightarrow equal background

Different Z: number of protons differ 10%

- \rightarrow different magnetic fields
- ightarrow different CME signal
- $\rightarrow \Delta \gamma$ observable differ by 20%

 $\Delta \gamma_{\text{bkgd}} = \frac{N_{\rho}}{N_{\rho}} \left\langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\varphi_{\rho}) \right\rangle v_{2,\rho} \propto v_2 / N$

FW, PRC 81 (2010) 064902; Bzdak, Koch, Liao, PRC 81 (2010) 031901(R); Schlichting, Pratt, PRC 83 (2011) 014913;

Background dominates!

Voloshin, PRL 105 (2010) 172301 Haojie Xu et al. PRL 121 (2018) 022301 Hanlin Li et al. PRC 98 (2018) 054907

PHYSICAL REVIEW LETTERS 121, 022301 (2018)

Importance of Isobar Density Distributions on the Chiral Magnetic Effect Search

Hao-jie Xu,¹ Xiaobao Wang,¹ Hanlin Li,² Jie Zhao,³ Zi-Wei Lin,^{4,5} Caiwan Shen,¹ and Fuqiang Wang^{1,3,*}
 ¹School of Science, Huzhou University, Huzhou, Zhejiang 313000, China
 ²College of Science, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
 ³Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
 ⁴Department of Physics, East Carolina University, Greenville, North Carolina 27858, USA
 ⁵Key Laboratory of Quarks and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan, Hubei 430079, China

(Received 7 March 2018; revised manuscript received 7 May 2018; published 11 July 2018)

Same A: same strong interaction physics

 \rightarrow equal background

Different Z: number of protons differ 10%

- \rightarrow different magnetic fields
- \rightarrow different CME signal
- $\rightarrow \Delta \gamma$ observable differ by 20%

ISOBAR COLLISIONS ARE DIFFERENT

STAR, PRC 105 (2022) 014901

Fuqiang Wang

CME OBSERVABLE ISOBAR RATIO

STAR, PRC 105 (2022) 014901 Feng et al., PRC 105 (2022) 024913 STAR, 2308.16846

- 0.4% precision is achieved!
- But isobar ratio is below unity; primary reason is multiplicity difference due to nuclear structure.
 - CME Upper Limit 10% (of inclusive $\Delta \gamma$ measurement), at 95% Confidence Level.

TURN THE QUESTION AROUND

PHYSICAL REVIEW LETTERS 125, 222301 (2020)

Probing the Neutron Skin with Ultrarelativistic Isobaric Collisions

Hanlin Li¹, Hao-jie Xu¹,^{2,*} Ying Zhou,³ Xiaobao Wang,² Jie Zhao,⁴ Lie-Wen Chen,^{3,†} and Fuqiang Wang^{2,4,‡}

- Large data samples, high statistical precision (2 billions MB events each)
- Exquisite care in controlling systematics: run conditions, run alteration, data blinding, online monitoring... offline calibration, blind data analysis → Large degree of cancellation of systematics
- Sensitive only to matter densities, but proton densities are well measured
- Unique means to probe neutron skin and symmetry energy slope parameter

A FEW DETAILS ON DFT CALC

Z. Zhang & L-W Chen, PRC 94 (2016) 064326 B.A. Brown, PRL 85 (2000) 5296 R. Furnstahl, NPA 706 (2002) 85

X. Roca-Maza et al, PRL 106 (2011) 252501

SHF: Standard Skyrme-Hartree-Fock (SHF) model eSHF: Extended SHF model

$$v_{i,j} = t_0 (1 + x_0 P_{\sigma}) \delta(\mathbf{r}) + \frac{1}{6} t_3 (1 + x_3 P_{\sigma}) \rho^{\alpha}(\mathbf{R}) \delta(\mathbf{r}) + \frac{1}{2} t_1 (1 + x_1 P_{\sigma}) [K'^2 \delta(\mathbf{r}) + \delta(\mathbf{r}) K^2] + t_2 (1 + x_2 P_{\sigma}) \mathbf{K}' \cdot \delta(\mathbf{r}) \mathbf{K} + \frac{1}{2} t_4 (1 + x_4 P_{\sigma}) [K'^2 \delta(\mathbf{r}) \rho(\mathbf{R}) + \rho(\mathbf{R}) \delta(\mathbf{r}) K^2] + t_5 (1 + x_5 P_{\sigma}) \mathbf{K}' \cdot \rho(\mathbf{R}) \delta(\mathbf{r}) \mathbf{K}$$
Extended
+ $i W_0 (\boldsymbol{\sigma}_i + \boldsymbol{\sigma}_j) \cdot [\mathbf{K}' \times \delta(\mathbf{r}) \mathbf{K}],$ (4)

Larger L, harder EOS $\leftarrow \rightarrow$ need small δ to lower $E \leftarrow \rightarrow$ smaller ρ_n , larger Δr_{np}

$$E(\rho,\delta) = E_{0}(\rho) + E_{sym}(\rho)\delta^{2} + O(\delta^{4}); \ \rho \equiv \rho_{n} + \rho_{p}, \ \delta \equiv (\rho_{n} - \rho_{p})/\rho$$

$$E_{sym}(\rho) \approx E_{sym}(\rho_{0}) + L(\rho_{0})\chi + \frac{1}{2}K_{sym}(\rho_{0})\chi^{2}; \ \chi \equiv \frac{\rho - \rho_{0}}{3\rho_{0}}$$

$$g^{6}Zr: (N-Z)/A = 0.167$$

$$g^{6}Ru: (N-Z)/A = 0.083$$

$$L(\rho_{c}) = 3\rho_{c}\frac{\partial E_{sym}(\rho)}{\partial\rho}\Big|_{\rho = \rho_{c}} = \left(L(\rho_{0}) + K_{sym}\frac{\rho_{c} - \rho_{0}}{3\rho_{0}}\right)\frac{\rho_{c}}{\rho_{0}}$$

$$\rho_{c} \approx 0.11 \text{ fm}^{-3} \approx 2\rho_{0}/3$$

$$L \approx 3L_{c}/2 + K_{sym}/9$$

$$L(\rho_{c}) = 4\rho_{c} + \frac{\rho_{c}}{208} + \frac{\rho_{c}}{2$$

HOW TO DO IT?

Calculate DFT with a few L parameters, compare outcome to measurements (multiplicity, $<p_T>$, etc.)

Fuqiang Wang

HOW TO DO IT?

Calculate DFT with a few L parameters, compare outcome to measurements (multiplicity, $<p_T>$, etc.)

Fuqiang Wang

CENTRAL COLLISION MULTIPLICITY

H. Li, H-j Xu et al, PRL 125 (2020) 222301

Smaller r, larger density

Larger *r*, smaller density

 \longrightarrow Larger $N_{\rm ch}$ and $\langle p_{\rm T} \rangle$

ity _____ Smaller
$$N_{
m ch}$$
 and $\langle p_{
m T}
angle$

Central collisions: Multiplicity tail ultrasensitive to neutron skin

CENTRAL COLLISION MULTIPLICITY

H. Li, H-j Xu et al, PRL 125 (2020) 222301

CENTRAL COLLISION MULTIPLICITY H. Li, H-j Xu et al, PRL 125 (2020) 222301 H-j Xu (STAR), 2208.06149, QM'2022

OTHER VARIABLES: <p_>

H-j Xu et al, PRC 108 (2023) L011902

- Smaller *r*, larger density
- Larger *r*, smaller density

Larger $N_{
m ch}$ and $\langle p_{
m T} \rangle$

Smaller $N_{\rm ch}$ and $\langle p_{\rm T} \rangle$

<p_T> ratio insensitive to model details

OTHER VARIABLES: <p_>

H-j Xu et al, PRC 108 (2023) L011902

NET-CHARGE IN PERIPHERAL

Grazing peripheral collisions directly sensitive to neutron skin

q_{AA} = fraction of protons participating in the collision Fewer charge participants, smaller final-state net-charge

 $\alpha = \Delta Q \text{ ratio in nn to pp interaction}$ Curves: NN superimposition assumption $R(\Delta Q) = \frac{q_{RuRu} + \alpha/(1 - \alpha)}{q_{ZrZr} + \alpha/(1 - \alpha)}$

NuSym23 - XIth International Symposium on Nuclear Symmetry Energy · 18-22 September 2023 · GSI

24

NUCLEAR SHAPES What physics can be extracted from nuclear shape?

Fuqiang Wang

SUMMARY

- Nuclear structure has effects on final-state particle production and distributions in heavy ion collisions at relativistic energies
- High precision isobar collision data are sensitive enough to provide information to nuclear structure and symmetry energy, valuable input with totally different systematics from conventional means
- The extracted symmetry energy density slope parameter is consistent with world data with comparable uncertainties.
- Final-state anisotropy measurements can probe nuclear shape and deformation, via hydrodynamic calculations bridging initial condition and final state.

Question: What physics can be extracted from nuclear shape / deformation?

PREX-2 Collaboration, PRL126, 172502(2021); B. Reed, et.al., PRL126, 172503(2021)

FIG. 1. Left: slope of the symmetry energy at nuclear saturation density ρ_0 (blue upper line) and at $(2/3)\rho_0$ (green lower line) as a function of R_{skin}^{208} . The numbers next to the lines denote values for the correlation coefficients. Right: Gaussian probability distribution for the slope of the symmetry energy $L = L(\rho_0)$ inferred by combining the linear correlation in the left figure with the recently reported PREX-2 limit. The six error bars are constraints on L obtained by using different theoretical approaches [14,19–25].

$$E(\rho,\delta) = E_{0}(\rho) + E_{sym}(\rho)\delta^{2} + O(\delta^{4}); \quad \rho \equiv \rho_{n} + \rho_{p}, \quad \delta \equiv (\rho_{n} - \rho_{p})/\rho$$

$$E_{sym}(\rho) \approx E_{sym}(\rho_{0}) + L(\rho_{0})\chi + \frac{1}{2}K_{sym}(\rho_{0})\chi^{2}; \quad \chi \equiv \frac{\rho - \rho_{0}}{3\rho_{0}}$$

$$L(\rho_{c}) = 3\rho_{c} \frac{\partial E_{sym}(\rho)}{\partial \rho}\Big|_{\rho=\rho_{c}} = L(\rho_{0})\frac{\partial \chi}{\partial \rho}\Big|_{\rho=\rho_{c}} + K_{sym}(\rho_{0})\chi\frac{\partial \chi}{\partial \rho}\Big|_{\rho=\rho_{c}}$$

$$L_{c} = \left(L + K_{sym}\frac{\rho_{c} - \rho_{0}}{3\rho_{0}}\right)\frac{\rho_{c}}{\rho_{0}}; \quad L \equiv L(\rho_{0}), L_{c} \equiv L(\rho_{c}), K_{sym} \equiv K_{sym}(\rho_{0})$$

$$L = \frac{\rho_{0}}{\rho_{c}}L_{c} - K_{sym}\frac{\rho_{c} - \rho_{0}}{3\rho_{0}}$$

$$\rho_{c} \approx 0.11 \text{ fm}^{-3} \approx 2\rho_{0}/3, \quad L \approx 3L_{c}/2 + K_{sym}/9$$
Incompressibility $K_{sym} = -137 \text{ MeV}$

Multiplicity ratio:

 $L(\rho_c) = 53.8 \pm 1.7 \pm 7.8 \text{ MeV}$ $L(\rho) = 65.4 \pm 2.1 \pm 12.1 \text{ MeV}$ $\Delta r_{\rm np,Zr} = 0.195 \pm 0.019 \, {\rm fm}$ $\Delta r_{\rm np,Ru} = 0.051 \pm 0.009 \, {\rm fm}$ $\langle p_T \rangle$ ratio: $L(\rho_c) = 56.8 \pm 0.4 \pm 10.4 \text{ MeV}$ $L(\rho) = 69.8 \pm 0.7 \pm 16.0 \,\mathrm{MeV}$ $\Delta r_{\rm np,Zr} = 0.202 \pm 0.024 \,\,{\rm fm}$ $\Delta r_{\rm np,Ru} = 0.052 \pm 0.012 \, {\rm fm}$

⁹⁶Ru

⁹⁶Ru

⁹⁶₄₄Ru

⁹⁶₄₀Zr

967

96Zr