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Light nuclei in heavy lon collisions
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Light nuclei in heavy-ion collisions

Dynamical treatment | gninodal decomposition oW incident n ‘ .
Mean-field »| " e.g., Statistical mean-field (SMF) ' energies | Large rragments
or Boltzmann—Langevin equation
M. Colonna, et. al, Nuclear Physics A 642 (1998) 449-460 Secondary decay
e.g. SMM or GEMINI
Manv-bod Many body scatterings like NNN < Nd — :
any O Y1 le Ant symmetrized molecular dynamics (AMD) > Light nuclei
correlations (Below pion threshold)

A. Ono, Journal of Physics: Conference Series 420 (2013) 012103

= Kinetic approach/Boltzmann—Uehling—Uhlenbeck equation
Light nuclei with A= 2 (d) and A = 3 (t, h) have been included. <15
P. Danielewicz and G. F. Bertsch, Nuclear Physics A533, (1991) 712-748

Spinodal decomposition -
Nearly equal-sized fragments

» Coalescing nucleons according to Ar and/or Ap
e.g., A. S. Botvina, et. al, Physical Review C 103, 064602 (2021) (Combining with decay models)

Cluster

recognition
Minimum spanning tree/plus most negative Eg

e.g., FRIGA, A. Le Fevre, et. al, Physical Review C 100, 034904 (2019)
> B. Borderie, et al., INDRA Collaboration, PRL86, 3252 (2001)
""" B. Borderie, et al., INDRA Collaboration, PLB782 (2018) 291-296




Light nuclei in kinetic approach

Kinetic equations are derived based on the closed time-path Green’s function formulism

For example, in the deuteron case, the two-body Green’s function G, satisfies an equation

Ga =Gy + igﬂGQ

The light nuclei are realized as poles of the many-body Green’s function.
In the vicinity of the pole, we have

i{x|Gs (P, ), R, T)|z") ~ (x|¢(P, R, T)Y{¢(P,R, T)x") fo( P, R, T)276[Q — E(P, R, T)]
i{x|Gy (P,Q, R, T)|z") ~ (x|¢p(P, R, T)){¢(P, R, T)x")[1 + fo( P, R, T)]27[Q — E(P, R, T)]

P. Danielewicz and G. F. Bertsch, Nuclear Physics A533, 712-748 (1991)

Finally leads to equations of the occupation number f; of light nuclei

(at+6p67'§r_6r€T'6p)fT = Kf[fna fp: fa,+ '](1:|:f7')_lcf>[fm fp: fa, -+ ]fT? T=n,p,d,t,h,«a



Light nuclei in kinetic approach

For example, the Ioss term of the a particle
5 5
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+ elastic part.
Light ngclei can be produced apd dissociated through many-body « Many body transition
scatterings (currently we have included the red ones)
« A=2 NN & nd, NNN < Nd amplitudes e.g., |[My,,, s nql?
* A=3 nNNN & nt(h), tNd < nwt(h), NNNN < Nt(h), : :
NNd < Nt(h) * The medium effect of light
 A=4 tNNNN o na, tNNd < na, tNt(h) © na, nuclei — Mott effect
NNNNN < Na, NNNd < Na, NNt(h) & Na, dt(h) & Na




I m pu | Se a p p rOXI matlo n In transport approach, under IA

the scattering NNN < Nd can

Muvanwn? & F(V5) > Mloa)TMy— vl be divided into two subprocess
D | d speclta T p n
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F(+/s) is a factor to 1) account for the inadequacy of IA, 2) N d
exclude the elastic part of N-d from the total amplitude.
IA could ensure the detailed
They should be determined by comparing with balance condition of many-body

experimental N-d N-t N-a in-elastic cross sections. scatterings like NNN < Nd




Cross sections

* A natural feature of Fis it approaches to 1 as +/s
increases. (For large incident energy, 1A
becomes very good, and the reaction is
dominated by in-elastic channels)

 Different parameterizations of F (v/s) for
different many-body scattering channels are
adopted to properly reproduce the
experimental N-d, N-h and N-a inelastic cross

sections.

* Na & NNt(h) and Na < dt(h) should be
included to reproduce the experimental N-a
inelastic cross sections at small /s. Assumption
has to be made of the branching ratios of Na

scattering
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M Ott effECt A light nucleus can not bind if its surrounding

. : , nucleon phase space is too dense
In-medium Schrodinger equation .

[Ea AP+ +E,(AP-] U () + [1— FaAP D) f, (3 P—7)] / @lr—qhy,<qu\q’>wﬁ<a>=E<ﬁ>wﬁ<qﬁ

The binding energy of a light nucleus (with momentum P) in nuclear medium, the Mott point is recognized
as where the binding energy becomes negative.
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G. Ropke, Nuclear Physics A 867 (2011) 66—80




MOtt effeCt In kinetic approach

The Mott effect can be
effectively introduced into the
kinetic approach through a

phase-space cutoff parameter.
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ng ht—nUC|e| ylelds Central Au+Au collisions at 0.4A GeV

Multiplicities and charge balance for Au+ Auat E/A =0.40 GeV and by < 0.15.

Z=1 10604+40 p 529427 Z=2 213+19 PHINOEEDD FOPI data at 0.4A GeV
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Li 35+04 Be 0.84 4 0.09 50 . T T T T T ; T
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A smaller f 2 leads to a significant decrease of N,. t (fm/c)

R. Wang, Y.-G. Ma, L.-W. Chen, C. M. Ko, K.-J. Sun, Z. Zhang, arXiv:2305.02988



Light-nuclel yields
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R. Wang, Z. Zhang, Y.-G. Ma, L.-W. Chen, C. M. Ko, K.-J. Sun, in preparation
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a-particle fraction CE—

0.6A GeV |

— 0.000
* According to the present kinetic approach, in = R |~
intermediate-energy heavy-ion collisions, light nuclei = '-""'WGGVi 15.00

. . . I~ Wiy s
are mainly formatted and freeze-out chemically at high N
densities (NNNNN < Na), especially for a-particles. im
Collision rate ~p° ™ 0254GeV i
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Contradict! 100 . e (mMey)

E(d) fet Solid: (0.214,0.268,0.354) |
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* |tis generally thought that the dense nuclear matter __ _ *

can be regarded almost as a uniform nucleon liquid.

a-particle fraction ~ 0.2 for in nuclear matter at around R G ol

p = 0.266 fm~> with T=19.5MeV, p = 0.306 fm 3 with .~~~ T
T=33.9MeV, and p = 0.340 fm~3 with T=51.1 MeV.
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a-particle fraction
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Summary

* The FOPI data on light-nuclei yields can be reasonably reproduced within
the present kinetic approach which incorporates dynamically all the
light-nuclei (up to A=4) degrees of freedom.

e OQur results indicate that the enhancement of a-particle yield is a
consequence of its weaker Mott effect.

* Based on our approach, the FOPI data of light-nuclei yields indicate an
unexpectedly high a-particle fraction in warm and dense nuclear matter.

Key question: Figure out the interplay between light nuclei
and large fragments to achieve a more comprehensive

description of the cluster production in heavy-ion collisions. Thank you




