Constraining Neutron-Star Matter with Microscopic and Macroscopic Collisions

Huth, Pang et al. Nature 606 (2022) 276-280 Pang et al arxiv:2205:08513

Peter T. H. Pang

Prior construction

40d 10 × 10

10

R [km]

HOA 10 × 10⁻¹

10

12

R [km]

14

0.8

14

Combining

- chiral effective field theory
- radio pulsar measurements
- X-ray NICER measurements
- gravitational waves
- kilonova observations
- HIC

TD et al. Science, Vol. 370, Issue 6523, pp. 1450-1453 Huth et al., Nature 606 (2022) 276-280

H 10 × 10⁻

08

10

12

R [km]

14

cf. talk by Peter Pang

Prior on the EOS

- Chiral effective theory below 1.5 nsat
- Speed-of-sound extrapolation (CSE) afterwards
- EOS with first-order phase transitions (i.e., segment with cs = 0) are added

Radio pulsars

Pulsar	Mass is M_{\odot}
PSR J0348+4032	2.01 ± 0.04
PSR J1614-2230	1.908 ± 0.016

$$\mathcal{L}_{\text{PSR}} = p(\text{PSR}|\text{EOS}) \propto \int_0^\infty p(m|\text{PSR})p(m|\text{EOS})$$
$$= \int_0^{M_{\text{max}}} p(m|\text{PSR}); \ p(m|\text{EOS}) = 1/M_{\text{max}}(\text{EOS})$$

GW170817 reamant

- GW170817 results in a black hole
- Numerical-relativity motivated fitting
- Upper bound on the maximum mass
- c.f. Rezzolla's talk on Tuesday

$$\mathcal{L}_{M_{\text{bound}}}$$

= $p(M_{\text{bound}}|\text{EOS}) = 1 - \text{CDF}(M_{\text{max}}; M_0, \sigma^2)$

$$M_{\rm bound} = M_0 \pm \sigma$$

(The Neutron Star Interior Composition Explorer Mission)

10

Miller et al. ApJ. Lett. 887, L24 (2019), Riley et al. ApJ. Lett. 887, L21 (2019), Miller et al. ApJ. Lett. 918, L28 (2021), Riley et al. ApJ. Lett. 918, L27 (2021)

(The Neutron Star Interior Composition Explorer Mission)

Miller et al. ApJ. Lett. 887, L24 (2019), Riley et al. ApJ. Lett. 887, L21 (2019), Miller et al. ApJ. Lett. 918, L28 (2021), Riley et al. ApJ. Lett. 918, L27 (2021)

(The Neutron Star Interior Composition Explorer Mission)

Miller et al. ApJ. Lett. 887, L24 (2019), Riley et al. ApJ. Lett. 887, L21 (2019), Miller et al. ApJ. Lett. 918, L28 (2021), Riley et al. ApJ. Lett. 918, L27 (2021)

(The Neutron Star Interior Composition Explorer Mission)

PSR J0030+0451 and PSR J0740+6620

Miller et al. ApJ. Lett. 887, L24 (2019), Riley et al. ApJ. Lett. 887, L21 (2019), Miller et al. ApJ. Lett. 918, L28 (2021), Riley et al. ApJ. Lett. 918, L27 (2021)

Gravitational waves

Gravitational waves

$$\mathcal{C}_{\rm GW}$$

 $\propto \exp\left(-2\int df \frac{|\tilde{d}(f) - \tilde{h}(f; \mathrm{EOS}, \vec{\theta})|^2}{S_n(f)}\right)$

- 15 source parameters + 1 EOS
- 20 * number of detector => calibration parameters
- Markov chain Monte Carlo / Nested sampling used for high-dimensional exploration

Gravitational waves

GW170817: reanalysis with IMRPhenomPv2_NRTidalv2

GW190425: reanalysis with IMRPhenomPv2_NRTidalv2

Kilonovae

Heavy-ion collisions

Symmetric matter

Asymmetric matter

EOS functional

$$\frac{E}{A}(n,\delta) \approx \frac{E}{A}(n,0) + S(n)\delta^{2}$$

$$\frac{E}{A}(n,0) = \frac{3}{5}\left(\frac{n}{n_{\text{sat}}}\right)^{\frac{2}{3}}E_{\text{F}} + \frac{\alpha n}{2n_{\text{sat}}} + \frac{\beta}{\gamma+1}\left(\frac{n}{n_{\text{sat}}}\right)^{\gamma}$$

$$S(n) = E_{\text{kin},0}\left(\frac{n}{n_{\text{sat}}}\right)^{\frac{2}{3}} + E_{\text{pot},0}\left(\frac{n}{n_{\text{sat}}}\right)^{\gamma_{\text{asy}}}$$

$$P(n,\delta) = n^{2}\frac{\partial E/A(n,\delta)}{\partial n}$$

Sensitivity

Combing information

Result

	Prior (CEFT)	Astro+CEFT	HIC+CEFT	Combined
$P_{1.5n_{ m sat}}~[{ m MeV fm}^{-3}]$	$5.59\substack{+2.04\-1.97}$	$5.84^{+1.95}_{-2.26}$	$6.06\substack{+1.85 \\ -2.04}$	$6.25\substack{+1.90 \\ -2.26}$
$R_{1.4} \; [{ m km}]$	$11.96\substack{+1.18 \\ -1.15}$	$11.93\substack{+0.80 \\ -0.75}$	$12.06\substack{+1.13 \\ -1.18}$	$12.01\substack{+0.78\\-0.77}$

Joint analysis

Nuclear Physics and Multi-messenger Astrophysics

github.com/nuclear-multimessenger-astronomy/nmma

Frequency (Hz)

- Simultaneously analyzing GW, kilonova and GRB afterglow
- Fully capture the correlation between parameters
- HPC facilities needed

Application: GRB211211A (Kunert et al. arxiv:2301.02049)

Name	Astrophysical	Bayes factor	Likelihood
	Processes	$\ln[{\cal B}_{ m ref}^1]$	$\ln[\mathcal{L}_{ ext{ref}}^1(\hat{ heta})]$
$BNS-GRB_{top}^{Kasen}$	Kilonova + GRB	ref.	ref.
$BNS-GRB_{Gauss}^{Kasen}$	Kilonova + GRB	-1.01 ± 0.10	-0.33
$\mathrm{BNS}\text{-}\mathrm{GRB}^{\mathrm{Bulla}}_{\mathrm{top}}$	Kilonova + GRB	-0.49 ± 0.10	-1.15
$\mathrm{BNS} ext{-}\mathrm{GRB}^{\mathrm{Bulla}}_{\mathrm{Gauss}}$	Kilonova + GRB	-1.59 ± 0.10	-2.13
$NSBH-GRB_{top}$	Kilonova + GRB	-3.76 ± 0.10	-3.82
$\mathrm{NSBH}\text{-}\mathrm{GRB}_{\mathrm{Gauss}}$	Kilonova + GRB	-2.08 ± 0.10	-4.16
$\mathrm{SNCol} ext{-}\mathrm{GRB}_\mathrm{top}$	rCCSNe + GRB	-10.42 ± 0.11	-3.04
$SNCol-GRB_{Gauss}$	rCCSNe + GRB	-10.74 ± 0.11	-3.58
$SN98bw-GRB_{top}$	CCSNe + GRB	-6.93 ± 0.10	-8.14
$\rm SN98bw\text{-}GRB_{Gauss}$	CCSNe + GRB	-8.05 ± 0.10	-8.13
$\mathrm{GRB}_{\mathrm{top}}$	GRB	-6.04 ± 0.10	-7.10
$\mathrm{GRB}_{\mathrm{Gauss}}$	GRB	-6.96 ± 0.10	-7.33

Application: GRB211211A (Kunert et al. arxiv:2301.02049)

NMMA Application: GW190814 (Tews et al. ApJL 908(2021) 1, L1)

- If GW170817 produced a BH:

 GW190814 is a BBH with
 > 99.9%
- relaxing this assumption:
 - GW190814 is a BBH with ~ 83%

NMMA Application: GW190814 (Tews et al. ApJL 908(2021) 1, L1)

Multimessenger constraint on quarkyonic model (Pang et al. arxiv:2308.15067)

Nuclear experiments

Astrophysical modelling

WE NEED YOU!!

How to reliably improve the interdisciplinary / multi-messenger study on supranuclear matter?

X-ray / radio pulsar

Gravitational-waves

$$egin{aligned} Q_{ij} &= -\Lambda m^5 \mathcal{E}_{ij} \ \Lambda &= rac{2}{3} k_2 \left(rac{R}{m}
ight)^5, \end{aligned}$$

Prior construction

 $R \,[\mathrm{km}]$

 $R \,[\mathrm{km}]$

 $R \; [\mathrm{km}]$

Combing information

$$egin{split} \mathcal{L}_{ ext{HIC}}(ext{EOS}) &= \int dn\,dP\,p(ext{HIC}|n,P)p(n,P| ext{EOS}) \ &\propto \int dn\,dP\,p(n,P| ext{HIC})p(n,P| ext{EOS}) \ &\propto \int dn\,dP\,p(n,P| ext{HIC})\delta(P-P(n, ext{EOS})) \ &= \int dn\,P(n,P=P(n; ext{EOS})| ext{HIC})\,, \end{split}$$

Result

Density	Astro-only	HIC-only	Combined
$1.0~n_{ m sat}$	$2.00\substack{+0.52 \\ -0.49}$	$2.05\substack{+0.49 \\ -0.45}$	$2.11\substack{+0.49 \\ -0.52}$
$1.5n_{ m sat}$	$5.84^{+1.96}_{-2.26}$	$6.06\substack{+1.85 \\ -2.04}$	$6.25\substack{+1.90 \\ -2.26}$
$2.0n_{ m sat}$	$18.44\substack{+16.24\\-9.69}$	$19.47\substack{+33.63 \\ -11.67}$	$19.07\substack{+15.27 \\ -10.53}$
$2.5n_{ m sat}$	$45.05\substack{+39.80 \\ -19.62}$	$47.78^{+75.96}_{-32.96}$	$45.43\substack{+40.41 \\ -19.11}$

Result

Mass	Astro-only	HIC-only	Combined
$1.0 M_{\odot}$	$11.76\substack{+0.65\\-0.71}$	$11.89\substack{+0.79 \\ -0.98}$	$11.88\substack{+0.57 \\ -0.76}$
$1.4 M_{\odot}$	$11.94\substack{+0.79\\-0.78}$	$12.06\substack{+1.13 \\ -1.18}$	$12.01\substack{+0.78 \\ -0.77}$
$1.6 M_{\odot}$	$11.97\substack{+0.87 \\ -0.78}$	$12.11\substack{+1.33 \\ -1.33}$	$12.03\substack{+0.98\\-0.75}$
$2.0 M_{\odot}$	$11.88\substack{+1.23 \\ -1.10}$	$12.19\substack{+1.71 \\ -1.59}$	$11.91\substack{+1.24 \\ -1.11}$