
Heterogeneous particle tracking with SYCL
27.01.2023

Bartosz Soból

1

What is SYCL?

● Open standard, higher-level heterogeneous programming model - CPU, GPU, FPGA, ...

● Based on standard C++11 and newer - without language extensions

● Single source for host and kernel/device code

○ Tools for C++ work with SYCL (IDEs, static analysis, linters, formatters, …)

○ Kernel == any callable (function, lambda, function object)*

○ C++ functions called by kernel are also compiled as a part of device code

○ Implicit device-host separation

● Implicit memory management and task scheduling

● OpenCL concepts reused (context, device, queue, memory layers, …)

2

● Intel is investing a lot in SYCL (oneAPI, DPC++)

○ SYCL is the default programming model for new Intel hardware

○ Supports Intel hardware - CPUs, GPUs, FPGAs with low-level optimisation extensions

○ Additional NVIDIA and AMD GPUs support by Intel/Codeplay now official

● hipSYCL - developed as a research project at Heidelberg University

○ Supports CPUs (OpenMP), GPUs - AMD, NVIDIA, (Intel)

○ Successfully used on AMD supercomputers (LUMI, Frontier) - GROMACS software

○ Interesting concept - plugin/additional layer for existing compilers

● AMD/Xilinx is also working on SYCL (triSYCL, fork of Intel’s DPC++) for their FPGAs (Alveo)

○ Small research-like project, 2-3 devs part-time

● Codeplay’s ComputeCpp - first SYCL compiler, now less relevant, bought by Intel

● Celerity - SYCL-like MPI-SYCL wrapper

Implementations

Implementations

4

Ecosystem

5

Example: vector addition
// vadd.cpp
 1 #include <SYCL/sycl.hpp
 2 #include <array>
 3 int main() {
 4 constexpr int SIZE = 4;
 5 std::array<int, SIZE> vec_a{1, 2, 3, 4}, vec_b{5, 6, 7, 8}, vec_c;
 6
 7 sycl::queue queue{sycl::gpu_selector()};
 8 sycl::range<1> rng{SIZE};
 9 {
10 sycl::buffer<int, 1> a_buff{vec_a.data(), rng};
11 sycl::buffer<int, 1> b_buff{vec_b.data(), rng};
12 sycl::buffer<int, 1> c_buff{vec_c.data(), rng};
13 queue.submit([&](sycl::handler &cgh) {
14 const sycl::accessor a_acc{a_buff, cgh, sycl::read_only};
15 const sycl::accessor b_acc{b_buff, cgh, sycl::read_only};
16 sycl::accessor c_acc{c_buff, cgh, sycl::write_only, sycl::no_init};
17
18 auto kernel = [=](sycl::id<1> id) {
19 c_acc[id] = a_acc[id] + b_acc[id];
20 };
21
22 cgh.parallel_for(rng, kernel);
23 });
24 } // vec_c == {6, 8, 10, 12}
25 }

Example: compilation (hipSYCL, CMake)

 1 # CMakeLists.txt
 2
 3 project(sycl_vadd LANGUAGES CXX)
 4
 5 set(HIPSYCL_TARGETS “omp;cuda:sm_70” CACHE STRING "cpu|rocm:gfxXXX|cuda:sm_XX" FORCE)
 6
 7 find_package(hipSYCL CONFIG REQUIRED)
 8
 9 add_executable(sycl_vadd vadd.cpp)
10 add_sycl_to_target(TARGET sycl_vadd SOURCES vadd.cpp)
11

Main kernel code limitations

● C++ features not allowed in kernel/device code:

○ Dynamic memory allocation

○ Recursion

○ Exception handling

○ Function pointers

○ Virtual function calls

○ RTTI

○ ...

● Kernel must return void

● In sycl::buffer<T, Dim>, type T must be trivially copyable

How to try (hip)SYCL?

● hipSYCL supports wide range of devices

○ https://github.com/illuhad/hipSYCL/blob/develop/doc/installing.md

● Can be installed from repository

○ CUDA/ROCm must be installed separately (if needed)

● Or built from sources

○ Requirements:

■ C++17 compiler, CMake, python3,

■ boost (fiber, context), recent LLVM and Clang (>10),

■ CUDA/ROCm,

Project overview
● Track reconstruction algorithm for PANDA Forward Tracker

○ Two different procedures: for free particle and in EM field

● Investigating possibilities for online processing

● Using heterogeneous computing platforms

○ Multicore CPU, GPU, AMD/Xilinx Alveo FPGA

○ What platform and type of accelerator performs best?

● We’ve chosen SYCL programming model for our software

10

Project status

● Whole track reconstruction algorithm implemented

○ In plain C++ (single threaded)

○ In SYCL - 7 Kernels + helper functions, ~1.5k lines of accelerated code

● SYCL implementation was tested and benchmarked

○ With three SYCL implementations - hipSYCL, DPC++ and AMD/Xilinx’s triSYCL/sycl*

○ On different Intel and AMD CPUs

○ AMD and NVIDIA GPUs - Tesla V100, A100, Instinct MI250

○ AMD/Xilinx Alveo U280 FPGA*

○ All with single source code**

*partially

**triSYCL required minor changes in ~40 lines of host code

11

● I started with single threaded C++ code

● Which was adapted to SYCL with minimal effort

● Than introduced optimisations with as small as possible code changes

○ Mostly data-flow and memory layout changes

● Algorithm (kernel) code stayed very similar to pure C++ version

SYCL implementation strategy

12

13

14

Computing performance

Execution time (average from simulation events of 1,3,5,8 muons) without mom est [us/event]:

15

Implementation / device type Device
Batch

10k events
Batch

20k events
 Batch

80k events
Batch

160k events

C++ single thread / CPU Xeon E5-2667 v4 ~60

hipSYCL@OpenMP / CPU Xeon E5-2667 v4 10.7 8.6 7.4 7.3

hipSYCL@OpenMP / CPU Xeon Platinum 8268 7.7 7.0 6.7 6.6

hipSYCL@OpenMP / CPU EPYC 7742 8.2 7.5 6.3 5.5

hipSYCL@OpenMP / CPU EPYC 7763 4.5 4.0 4.0 4.0

hipSYCL@CUDA / GPU RTX 2080 Ti 10.7 8.6 7.4 7.3

hipSYCL@CUDA / GPU Tesla V100 SXM 10.4 8.1 6.9 6.7

hipSYCL@CUDA / GPU Tesla A100 SXM 9.3 6.9 5.3 5.0

hipSYCL@HIP / GPU Instinct MI250 14.8 9.6 6.6 6.3

triSYCL@HLS / FPGA Alveo U280 TBD

Computing performance

● Algorithm itself isn’t ideal for GPU performance

○ Lot’s of branches and not parallelizable loops

○ More data-bounded than compute-heavy

● CPU parallelization is quite good

○ AMD EPYC: running e.g. 4 16 core runs instead of single 64 core

would probably result in higher throughput

● GPU performance is OK, but not great

○ Increases with larger batch size

○ In should be possible to further fine-tune for GPU performance

○ GPU optimisations didn’t negatively affect CPU performance so far

16

Computing performance

● Performance evaluation with Intel’s DPC++ compiler is a TODO

● Native CUDA implementation exists, but is outdated

○ GPU performance was on par with SYCL when last checked

○ In general, (hip)SYCL is few percent behind or in par with CUDA, depending on use case

● FPGA is expected to be slow (Pentium III kind-of-slow)

○ Running such high-level software on FPGA is an achievement itself

○ More FPGA-specific optimisation options are available for Intel hardware

■ Require code changes for FPGA, but still uses the same API as base

17

Conclusions

● While this algorithm isn’t great for GPU, it’s a good demonstrator of SYCL

● SYCL can be used to build software for heterogeneous platform

○ With single programming model / API

● I GPU fails to deliver performance, parallel CPU version is free

● Hardware in the GreenCube will change

○ Before CBM start (and certainly before PANDA)

○ SYCL code will most probably work on Virgo successor

● Resources saved

18

