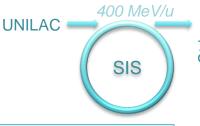


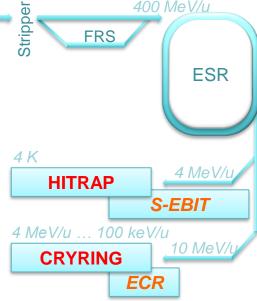
Frank Herfurth
16th February 2023

Operational Experience CRYRING@ESR

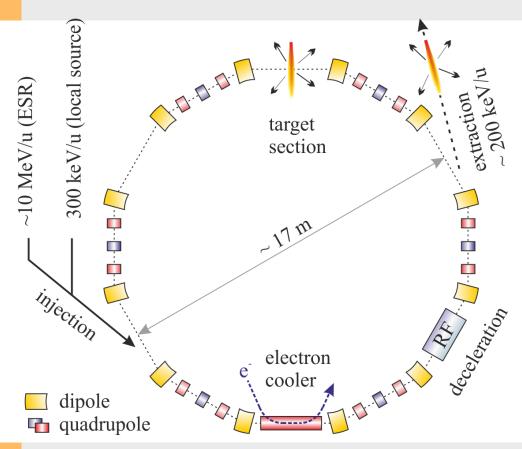

FAIR ESSI

- (a short) history (of a low energy storage ring)
- Operation : how does it look like?
 - typical pattern, general approach
 - beams in CRYRING@ESR: local and via HEST from ESR
 - (local) archiving and monitoring
 - beam life time and vacuum
 - electron cooling
- Beam instrumentation (low energy, low charge, low intensity)
- Machine Studies
 - Do we need a compensation solenoid?
 - Chromaticity (correction) and tune diagram
 - Multiturninjection, Fast and synchronized (B2B)
 - fast extraction
- Experiments, Outlook

Slow, Heavy, Highly Charged Ions @ GSI/FAIR



HITRAP


- Linear Decelerator and Trap as a source for heavy, highly-charged ions at keV
- \circ up to 10⁶ of ions alike U⁹¹⁺, Bi⁸²⁺ ...

CRYRING@ESR

- Low energy storage ring for heavy, highlycharged ions at 100s of keV/u .. 10 MeV/u
- local injector for lighter, lower charged ions
- Modernized and Reinstalled at ESR (GSI/FAIR)

CRYRING@ESR

- Max. rigidity 1.44 Tm
 - 15 MeV/u U⁹²⁺
 - Min. rigidity ~ 0.054 Tm
 - 150 keV/u protons

FAIR Research & Development

- Detectors and diagnostic systems
- FAIR type control system
- Training of operators on FAIR type system
- FAIR type safety and radiation monitoring/access system

with real beam (since standalone operation during commissioning possible)

Scientific Opportunities

Heavy, highly-charged ions as available at GSI (up to U⁹²⁺, fragmentation products) at low energy 100 keV/u .. 10 MeV/u – bridge the energy gap between the ESR (> 4 MeV/u) and HITRAP (<10 keV/u)

CRYRING in Stockholm (MSL)

Singly charged positive atomic ions: $\begin{array}{l} H^+, D^+, {}^3He^+, {}^4He^+, {}^7Li^+, {}^9Be^+, {}^{11}B^+, {}^{12}C^+, {}^{14}N^+, {}^{16}O^+, {}^{40}Ar^+, {}^{40}Ca^+, {}^{45}Sc^+, {}^{48}Ti^+, {}^{56}Fe^+, {}^{83}Kr^+, {}^{84}Kr^+, {}^{86}Kr^+, {}^{88}Sr^+, {}^{129}Xe^+, {}^{131}Xe^+, {}^{132}Xe^+, {}^{138}Ba^+, {}^{139}La^+, {}^{142}Nd^+, {}^{151}Eu^+, {}^{197}Au^+, {}^{142}Nd^+, {}^{142}$

 $\begin{array}{l} & \text{Multiply charged atomic ions:} \\ ^4He^{2^+, \ 11}B^{2^+, \ 12}C^{2^+, \ 12}C^{2^+, \ 12}C^{3^+, \ 12}C^{4^+, \ 12}C^{6^+, \ 14}N^{2^+, \ 14}N^{3^+, \ 14}N^{4^+, \ 14}N^{7^+, \ 16}O^{2^+, \ 16}O^{3^+, \ 16}O^{4^+, \ 16}O^{4^+, \ 16}O^{5^+, \ 16}O^{8^+, \ 19}F^{6^+, \ 19}F^{9^+, \ 20}Ne^{5^+, \ 20}Ne^{6^+, \ 20}Ne^{6^+, \ 20}Ne^{7^+, \ 20}Ne^{10^+, \ 28}Si^{3^+, \ 28}Si^{11^+, \ 28}Si^{14^+, \ 28}Si^{14^+, \ 28}Si^{14^+, \ 28}Si^{14^+, \ 28}O^{8^+, \ 18^+, \ 36}Ni^{17^+, \ 58}Ni^{18^+, \ 84}Kr^{33^+, \ 126}Xe^{36^+, \ 129}Xe^{36^+, \ 129}Xe^{37^+, \ 136}Xe^{39^+, \ 136}Xe^{44^+, \ 207}Pb^{53^+, \ 208}Pb^{53^+, \ 208}Pb^{$

~200 different ion species

singly charged (pos. & neg.) multiply charged molecular (pos. & neg.)

Positive molecular ions:

H₂⁺, HD⁺, H₃⁺, D₂⁺, H₂D⁺, ³He NH₂⁺, OH⁺, CH₅⁺, NH₄⁺, H₂O⁺ C₂H₂⁺, HCN⁺, C₂H₃⁺, HCNH⁺, NO⁺, D¹³CO⁺, CH₃O⁺, CF⁺, O₂ N₂H₇⁺, D₂³²S⁺, CD₃OH₂⁺, CD₃ D₃³⁴S⁺, C₃H₄⁺, D₂³⁷Cl⁺, D₅O₂⁺

Successful operated from 1992 to 2010

Dismantled and shipped to FAIR/GSI in 2012/13

 $\begin{aligned} & HCS^+, C_2H_5O^+, DN_2O^+, C_2H_5OH^+, CO_2D^+, CD_3CDO^+, NO^+: H_2O, O_3^+, DCOOD_2, \\ & CD_3OCD_2^+, C_3D_7^+, CF_2^+, NO^+: D_2O, DC_3N^+, CD_3OCD_3^+, N_3H_{10}^+, DC_3ND^+, \\ & CD_3ODCD_3^+, H_7O_3^+, COS^+, N_2O_2^+, CH_3OCOH_2^+, D_7O_3^+, N_3D_{10}^+, C_4D_2^+, S^{18}O_2^+, ArN_2^+, \\ & H_9O_4^+, CD_3COHNHCH_3^+, CD_3CONHDCH_3^+, C_6D_6^+, PO^{37}CI^+, H_1O_4^-, C_2S_2H_6^+, \\ & C_2S_2H_7^+, H_{13}O_6^+, PO^{35}CI_2^+ \end{aligned}$

Negative atomic ions: H, Li, F, Si, S, Cl, Se, Te

Negative molecular ions: CN, C₄, Si₂ Cl₂

GSI(FAIR): + heavy, highly charged ions!

.. some documents later ...

CRYRING@ESR: A study group report

Accepted by

- **GSI Science Council**
- FAIR ECE, AFI, Supervisory Board
- SFAIR, Swedish Science Council

Darmstadt, July 26, 2012

Michael Lestinsky¹, Norbert Angert¹, Ralph Bär¹, Ralph Becker¹, Mario Bevcic¹, Udo Blell¹, Walter Bock 1, Angela Bräuning-Demian 1, Håkan Danared 2, Oleksiv Dolinskyv 1, Wolfgang Enders1, Mats Engström3, Achim Fischer1, Bernhard Franzke1, Georg Gruber1, Peter Hülsmann¹, Anders Källberg³, Oliver Kester^{1,4}, Carl-Michael Kleffner¹, Yuri A. Litvinov¹, Carsten Mühle¹, Bernhard Müller¹, Ina Pschorn¹, Torsten Radon¹, Heinz Ramakers¹, Hartmut Reich-Sprenger¹, Dag Reistad³, Galina Riefert¹, Marcus Schwickert¹, Ansgar Simonsson³, Jan Sjöholm³, Örjan Skeppstedt³, Markus Steck¹, Thomas Stöhlker^{1,5}, Wolfgang Vinzenz¹, and Horst Welker¹

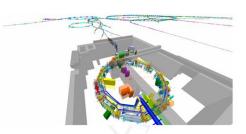
¹GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany

FACILITY FOR ANTIPROTON AND ION RESEARCH

SPARC Collaboration

Technical Design Report:

Experimental Instrumentation of CRYRING@ESR


Z. Andelkovic, C. Brandau, A. M. Dumchev, A. Ehresmann, W. Geithner, A. Georgiadis, V. Hannen, 5 M. Lestinsky, 1 Y. Litvinov, 1 W. Nörtershäuser, 6 R. Reifarth, 7 Ph. Reiss, 4 O. Rest, 5 R. Sánchez, 1 S. Schippers, 2 T. Stöhlker, 1,8,9 C. Weinheimer, 5 and D. Winzen 5

on behalf of the SPARC Collaboration

- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt
- ² Institut f
 ür Atom- und Molek
 ülphysik, Justus-Liebig-Universit
 ät Gießen, D-35392 Gießen
- ³ Leuphana Universität Lüneburg, D-21335 Lüneburg
- ⁴ Institut f
 ür Physik, Universit
 ät Kassel, D-34132 Kassel
- ⁵ Institut für Kernphysik, Universität Münster, D-48149 Münster
- ⁶ Institut f
 ür Kemphysik, Universit
 ät Darmstadt, D-64289 Darmstadt
- ⁷ Institut f
 ür Angewandte Physik, Goethe-Universit
 ät Frankfurt, D-60438
- 8 Helmholtz-Institut Jena, D-07743 Jena
- 9 Friedrich-Schiller-Universität Jena, D-07743 Jena
- * Contact person for this TDR

Accepted SPARC TDR

Physics book: CRYRING@ESR

M. Lestinsky, Y. Litvinov, Th. Stöhlker m.lestinsky@gsi.de

Atomic Physics Division GSI Helmholtzzentrum für Schwerionenforschung D-64291 Darmstadt

April 13, 2016

\$Revision: 1.47 \$ \$Date: 2016/04/11 14:51:45 \$

EPJ-ST 225 (2016) 797

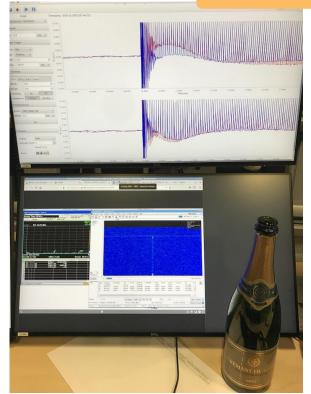
Michael Lestinsky et al.

²European Spallation Source ESS, SE-221 00 Lund, Sweden

³Fystkum, Stockholm University, SE-106 91 Stockholm, Sweden

⁴Institut für Angewandte Physik, Goethe-Universität Frankfurt, 60438 Frankfurt a. M., Germany ⁵Helmholtz-Institut Jena, 07743 Jena, Germany





First Turn and First beam from ESR

19.12.2019

FAIR GmbH | GSI GmbH F. Herfurth "CRYRING@ESR"

CRYRING@ESR Rough Timeline

Geithner

graphics: W.

Andreas Reiter ACC Seminar April, 2022

"Beam Instrumentation at CRYRING@ESR" Nov. 2012: KickOff Meeting Controls@GSI

2013 – 2015: Transport & delivery to GSI, system development, tests and installation

Jan. – Aug. 2016: Commissioning of local injector

July 2016: 1st transport ESR to section YR01

Oct. 2016: 1st turn (H₂+ beam from local injector)

May 2017: 1st electron beam in eCooler

Aug. 2017: 1st stored beam (H₂+, local injector) Nov. 2017: 1st cooled beam (H₂+, local injector)

2018: Commissioning with H₂+, D+, Mg+, Ar+

Setup of laser laboratory

2019: 1st stored ESR beam (Ar18+, 13 MeV/u)

Comm. with Mg+, C+, D+; 1st experiments

2020: Comm. & Experiments with Ne7+, Pb78+, Pb82+

2021: Comm. & Experiments with D+, Pb⁶⁷⁺, U⁹¹⁺, Ne^{2/3+}, O⁶⁺, ^{24/25}Mg+, Ag⁴⁷⁺, C+

E131 Schippers; 208-Pb; ESR->CRY

E148 Sanchez; 24-Mg; LOC-CRY E153 Biela; O6+; LOC-CRY

E138 Weber; 238-U; ESR-CRY • CMAT; 107-Ag; ESR-CRY

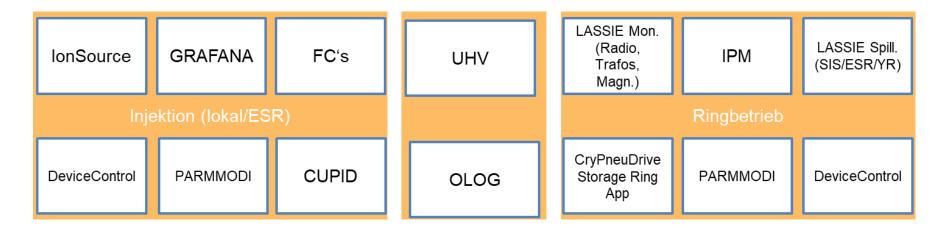
E140 Lestinsky; Ne3+; LOC-CRY E129 Rothhardt; 12-C; LOC-CRY

2022: GSI@WORK: Beam Time Schedule

CRYRING@ESR is a scientific instrument, fully integrated into the existing facility

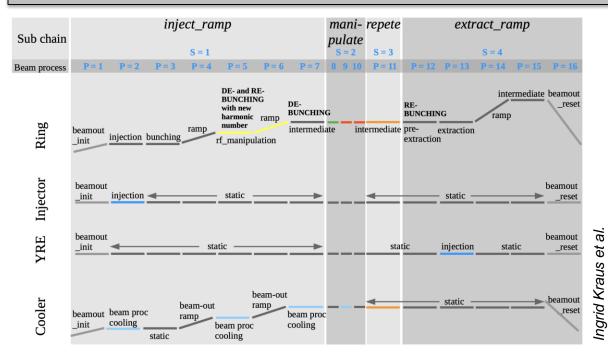
Operational Experience CRYRING@ESR

FAIR ESSI


- (a short) history (of a low energy storage ring)
- Operation : how does it look like?
 - typical pattern, general approach
 - beams in CRYRING@ESR: local and via HEST from ESR
 - (local) archiving and monitoring
 - beam life time and vacuum
 - electron cooling
- Beam instrumentation (low energy, low charge, low intensity)
- Machine Studies
 - Do we need a compensation solenoid?
 - Chromaticity (correction) and tune diagram
 - Multiturninjection, Fast and synchronized (B2B)
 - fast extraction
- Experiments, Outlook

Organization of Operation

Order of Apps on Console Screens (after the machine experts clean up their mess)



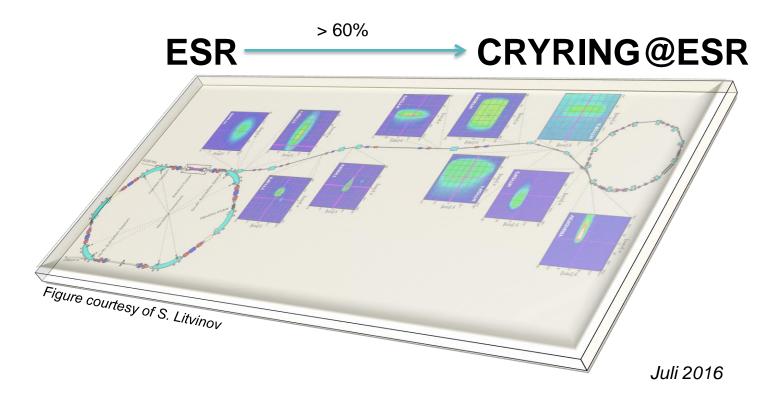
CRYRING-Meeting every Tuesday @ 10:30

"Controls"

"CRYRING as a FAIR test facility could be essential for FAIR relevant R&D projects, in particular with respect to accelerator related developments of instrumentation and controls: beam diagnostics, detector development, synchronization, efficient coupling of accel- erators and storage rings, software development etc.", CRYRING@ESR: A study group report, 2012

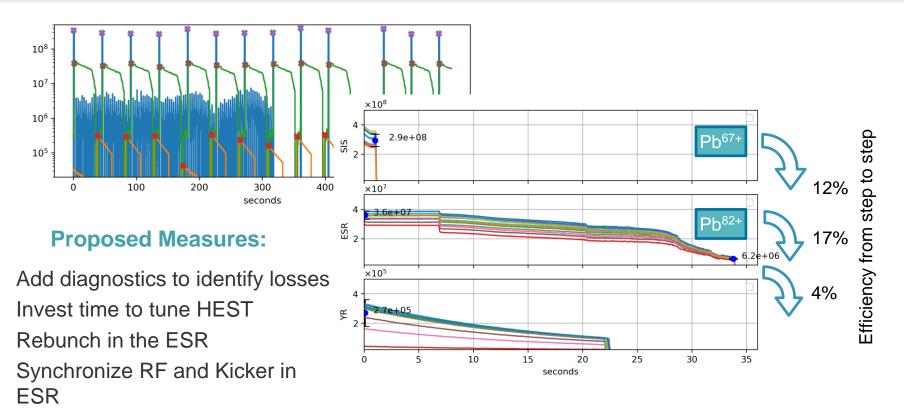
- many iterations of pattern (LSA) modelling
- two generations of ion source applications
- several development steps in bake out and vacuum control
- many customized parts of software
- .

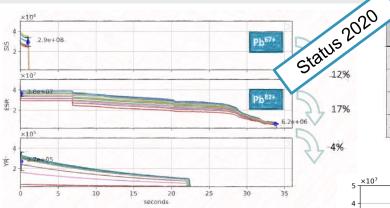
Beams in CRYRING@ESR



- ions from ESR
 - transfer efficiency (2022) ~ 50%!
 - I.e. 1e6 ions at 10 MeV/u in ESR = 5e5 ions in YR
 - example: up to 2e6 U⁹¹⁺ ions in YR
- ions from local injector
 - intensity limited by ion source and physics at low energy
 - independence allows for more flexibility
- new ions species from local source
 - being developed are Li and S. Tests for W planned.

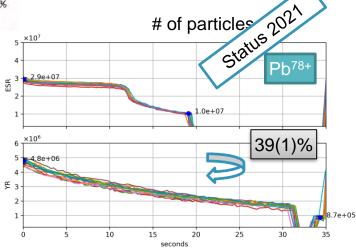
local injector	GSI complex (from ESR)
H ₂ +, D+	Ar ¹⁸⁺
C+, ⁷ Li+, O ⁶⁺ , Ne ^{2,7+} , Mg ⁺	Pb ⁷⁸⁺ , Au ⁷⁸⁺ , U ⁹¹⁺
S³+, ⁶ Li, W?+	


Decelerate, Extract, Transfer

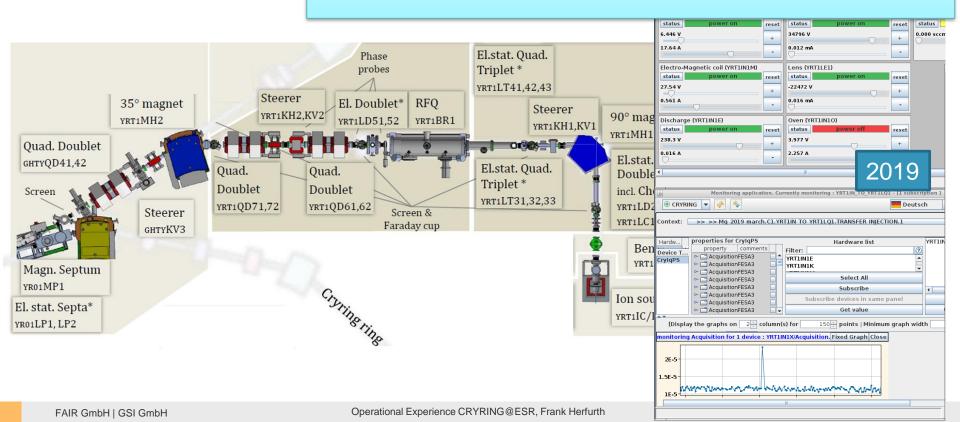

Intensities ESR - CRYRING@ESR

Transfer Efficiency ESR - CRYRING@ESR

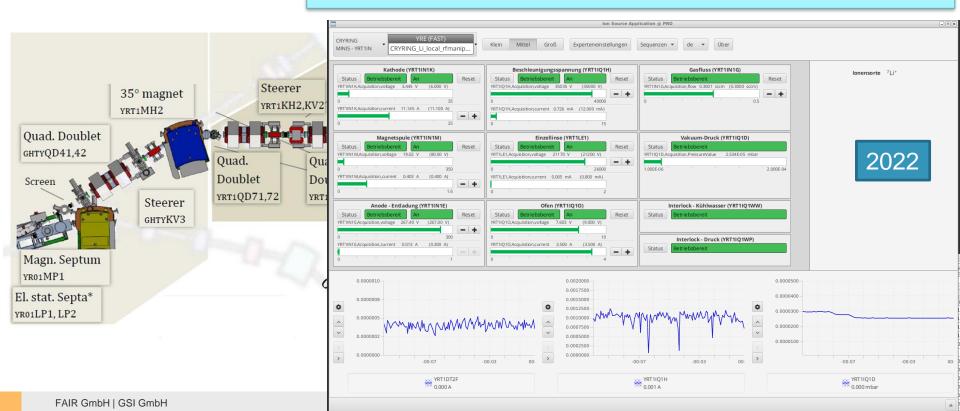
Loss per Resulting beam step in % intensity in % One out of two bunches 50 % 50 % HEST GHTYDC1-DC2 45 % 27.5 % Injection/bunching 20 % 22 % Unidentified Loss Factors 82 % 4 %


Add diagnostics to identify 🗸 losses

Invest time to tune HEST (helped very much by ByPassTrim feature)


Synchronize RF and Kicker in **ESR**

Varying external fields hamper transfer efficiency

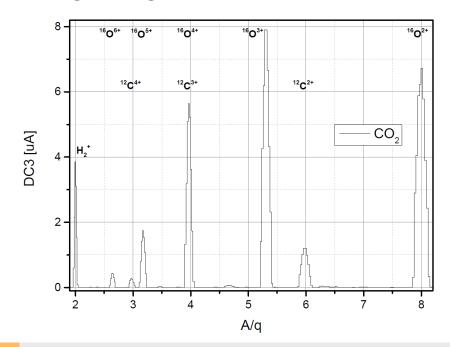

Local Injector

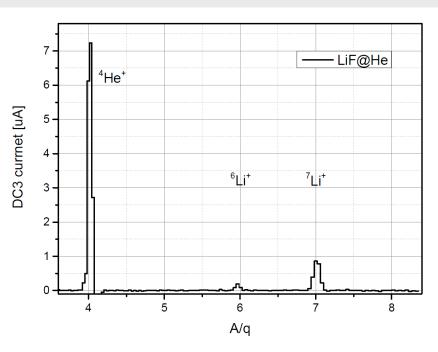
- Two ion source types, MINIS, ECR, both with oven
- Typical intensities of beam for injection 1 .. 100 μA
- Uninterrupted operation time depends on ion species and supply
- Ions produced so far H₂+, D+, C+, Li+, O⁶⁺, Ne²⁺, Ne⁷⁺, Mg+, Ar+

Local Injector

- Two ion source types, MINIS, ECR, both with oven
- Typical intensities of beam for injection 1 .. 100 μA
- Uninterrupted operation time depends on ion species and supply
- Ions produced so far H₂+, D+, C+, Li+, O⁶⁺, Ne²⁺, Ne⁷⁺, Mg+, Ar+

Ion Source Challenges

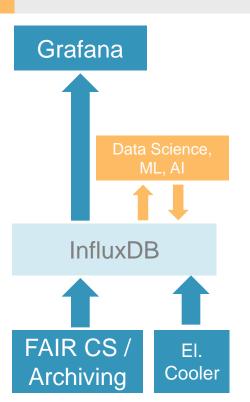



- Original purpose: commissioning using easy ions (H2+, D+)
 - Developed MINIS for operational stability, also included oven for Mg⁺
- ECR Source (modified source from Uni Giessen, S. Schippers et al.)
 - more stable, less interventions, more intense beams
 - on loan from Uni. Gießen
 - old device (plasma chamber, magnet, MW generator)
 - eventually broken (plasma chamber, magnet, MW generator) and being rebuilt in the moment
- operational challenges
 - complex local injector including source, linac same FTEs for all components
 - many short term changes due to failures and experiment requirements
- Aim: A reliable source for local beam investigations, commissioning and exp.

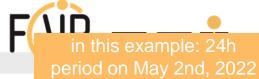
Ion Source - some Elements

- Li⁺ MINIS
- O⁶⁺ ECR

Spectra created with DeviceAutomator


Ion Source Monitoring – Operation for Li⁺

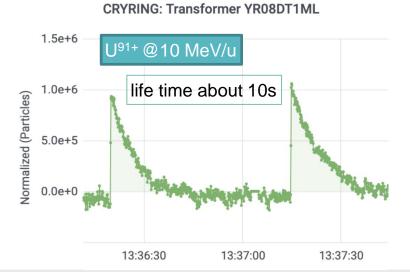
Decelerators/YR Data-Logging and Visualization



- Since 2019, now with server hosted by central IT
- short-term and mid-term (hours-weeks) monitoring of data relevant for CRYRING & UNILAC Ion Source operation:
 - Cryo system of electron cooler: LHe level, temperatures
 - vacuum system, ion source, intensities (local, ESR, SIS relatable)
 - Precision measurements of electron cooler high voltage
- Disk space is sufficient for ½ year of CRYRING@ESR operation
- System maintenance & support by 1 Person from Decelerators team

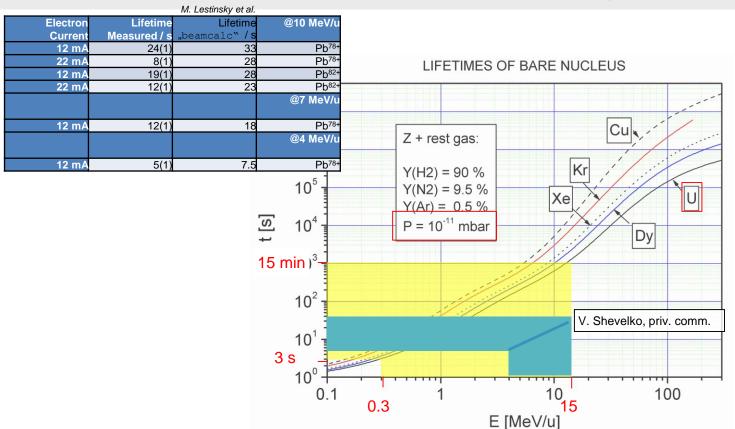
- Wolfgang Geithner et al.
- Organisational setup does not scale for whole GSI/FAIR
- InfluxDB open source version has limitations inacceptable for standard/GSI wide operation
- Non-standard / Non-CS compliant system

Pressure Monitoring

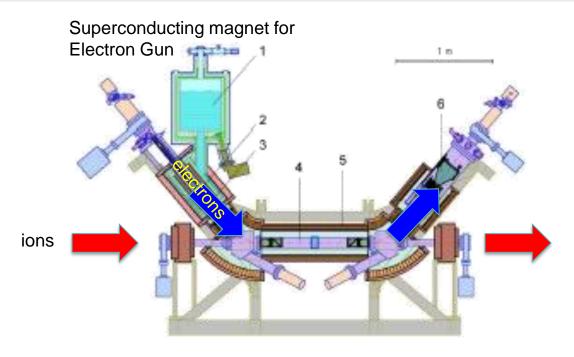

Vacuum Conditions

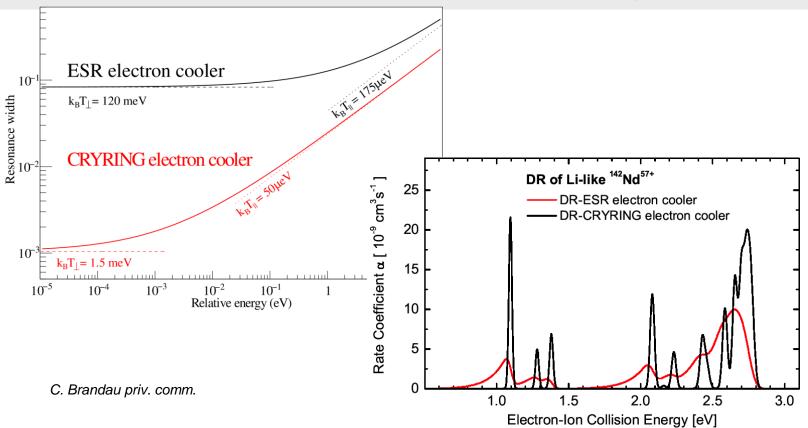
Main effort in 2020 went into sections 05 - 08:

- addition of new ion getter pumps
- NEG coating of some easily accessible parts

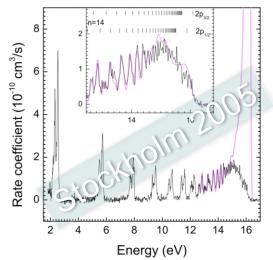

Next big improvement in the e-cooler section this shutdown (2022-2023)

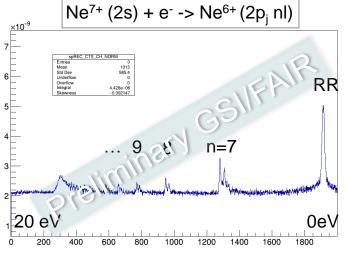
pretty good for first experiments for later needs constant improvements experiments


Ultra High Vacuum & Beam Life Time


Electron Cooler

Electron Cooling ESR - CRYRING




E-Cooler is now (2020) operational

- LHe filling procedure works now reliable
- EGun perveance close to design value
- EGun alignment done Expansion up to 100 available

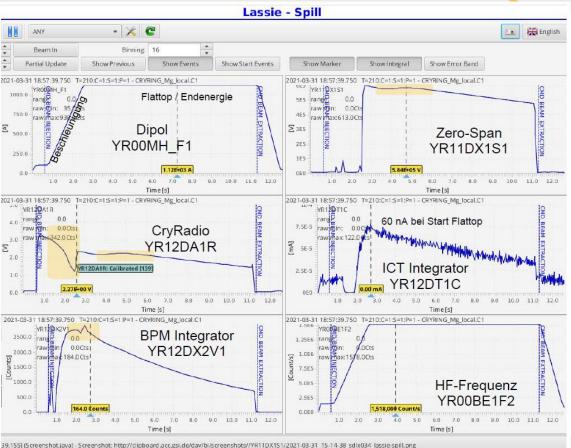
Dielectronic Recombination of Li-like Ne:

S. Böhm et al., Astronom. & Astrophys. 437 (2005) 1151

E. Menz, M. Lestinsky et al.

Beam Instrumentation

- intensity measurement
 - first turn, injection: Faraday cups
 - stored beam:
 - Integrating current transformer and parametric current transformer, CCC (absolute)
 - BPM sum rate, IPM count rate, intensity of Schottky noise (relative)
- position measurement
 - first turn: fluorescent screens
 - Beam position monitor (BPM) and Ionization profile monitor (IPM)
- "momentum" measurement
 - Schottky pickup, Laser spectroscopy


Andreas Reiter

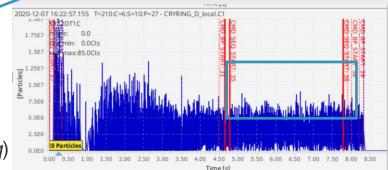
ACC Seminar April, 2022

"Beam Instrumentation at CRYRING@ESR"

Beam Instrumentation

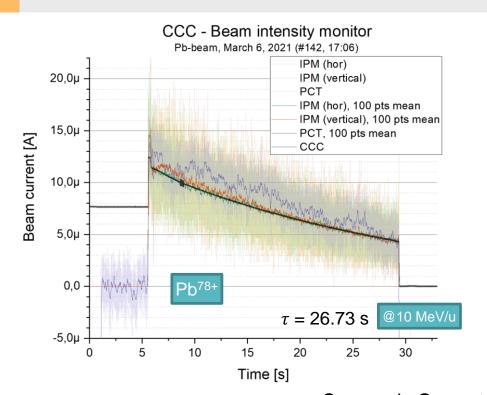
screenshot and labelling by Andreas Reiter, "Strom- und Intensitätsmessung

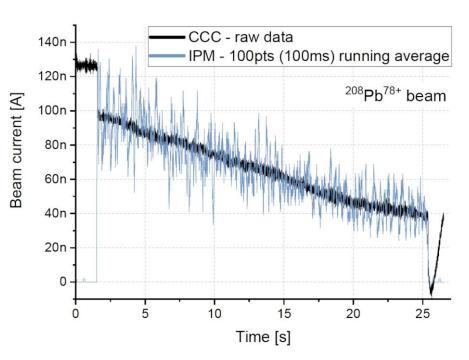
Detection limits


investigated the lower limit for necessary intensity Guinee pig D^+ @5 MeV/u (1·10⁷ particles = charges / μ A)

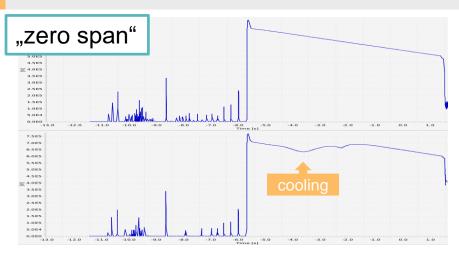
- for intensity measurement
 - with CCC: 5 nA (5·10⁴q)
 - bunched beam (ICT, CRYRADIO): 20 nA (2·10⁵q)
 - DC Trafo: 5 μA (1·10⁷q)
- for ring setup
 - injection and cooling
 - IPM: 300 nA (3·10⁶q)
 - Bunches on BPM, Schottky, Neutral Particle Counter: 150 nA (1.5·10⁶*q*)

Conclusion: Need at least 1.5·10⁶ charges stored to setup a cooled, accelerated beam


Info: typical transfer efficiency of mass separated beam from local source to ring: 20%



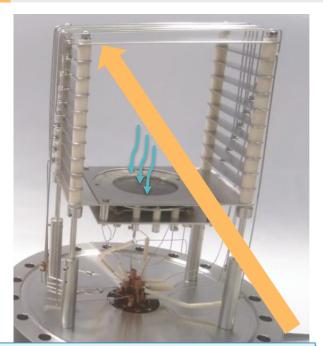
Detection limits – intensity: CCC

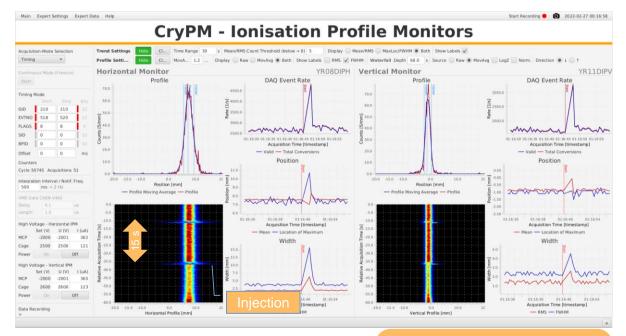


Cryogenic Current Comparator installed, tested, removed ... to be continued

Detection limits - setting up cooling

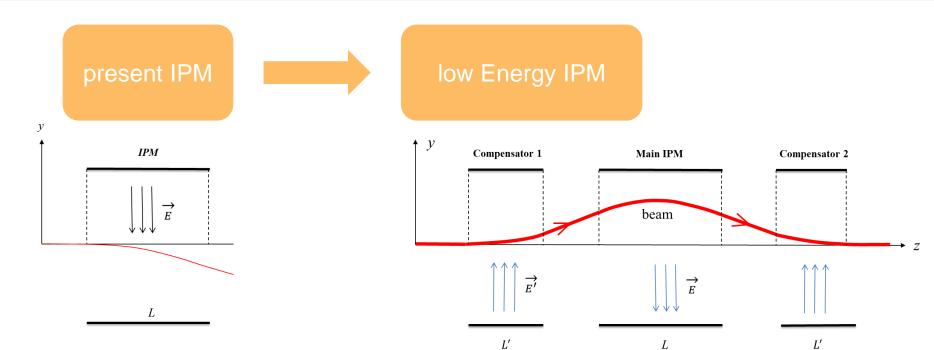
"indirect" tuning of cooling at low intensity/energy/charge, since IPM and costing beam Schottky not possible


neutral particle imaging (works only for 1+ ions)


M. Lestinsky, E. Menz, et al.

	LCI @ 100 keV/u	HCI @ 10 MeV/u
current	0.3 μΑ	3 μΑ
velocity β	2% c	14% c
ecool	100 V	5500 V
lifetime	10 sec	10 sec
BPM.	X.	√
Schottky	X.	√
AC Transf.	√	√
DC Transf.	X	√
IPM	X	√

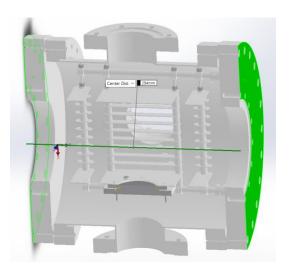
IPM – Ionization Profile Monitor

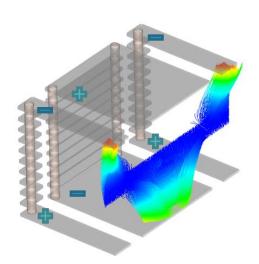


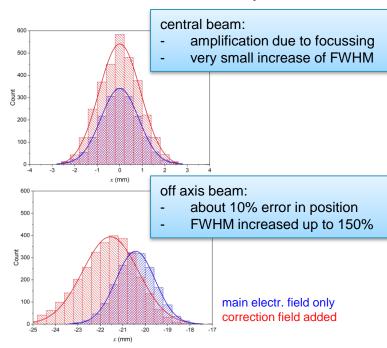
- 100 x 80 mm² field cage
- MCP stack with resistive anode
- VME peak sensing ADC
- lots of magic from our BEA colleagues

D+ accelerated from 300 keV/u to 1.5 MeV/u and cooled

Low Energy IPM



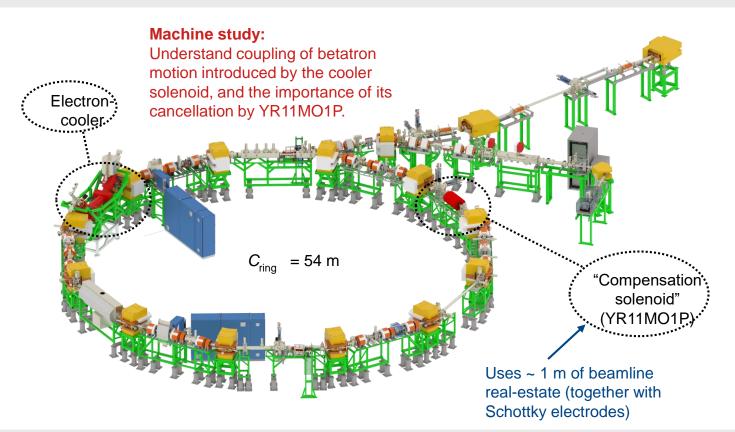



Low Energy IPM

- Design ready, Vacuum chamber and parts ordered, to be tested in May/June
 - drop in replacement for old one!
 - field distortion causes managable image distortion

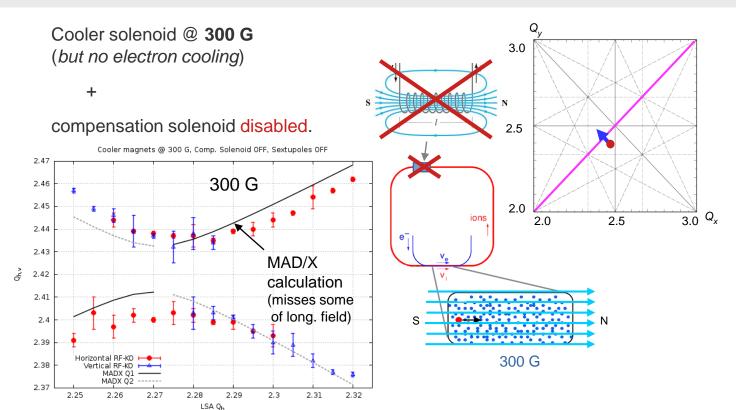
Bowen Zhou, Zoran Andelkovic, Rudi Hettinger, Nikita Kotovsky, Andreas Reiter et al.

Operational Experience CRYRING@ESR


FAIR ESSI

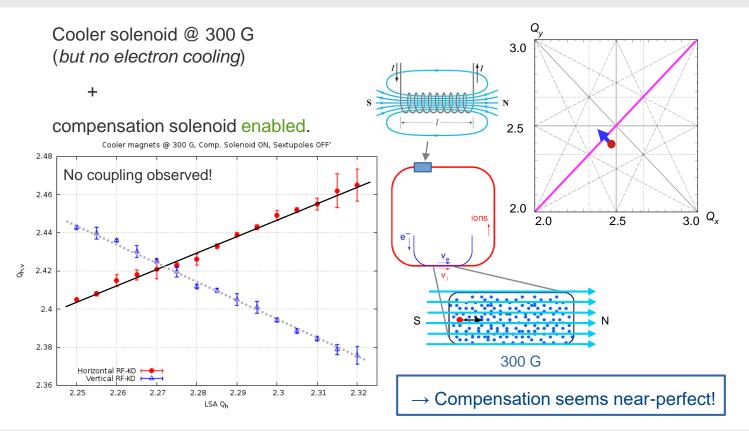
- (a short) history (of a low energy storage ring)
- Operation : how does it look like?
 - typical pattern, general approach
 - beams in CRYRING@ESR: local and via HEST from ESR
 - (local) archiving and monitoring
 - beam life time and vacuum
 - electron cooling
- Beam instrumentation (low energy, low charge, low intensity)
- Machine Studies
 - Do we need a compensation solenoid?
 - Chromaticity (correction) and tune diagram
 - Multiturninjection, Fast and synchronized (B2B)
 - fast extraction
- Experiments, Outlook

Motivation



Claude Krantz – CRYRING@ ESR Users Meeting

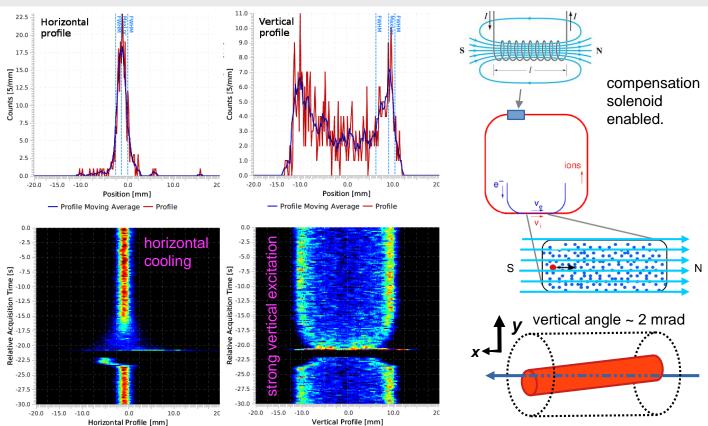
Betatron coupling



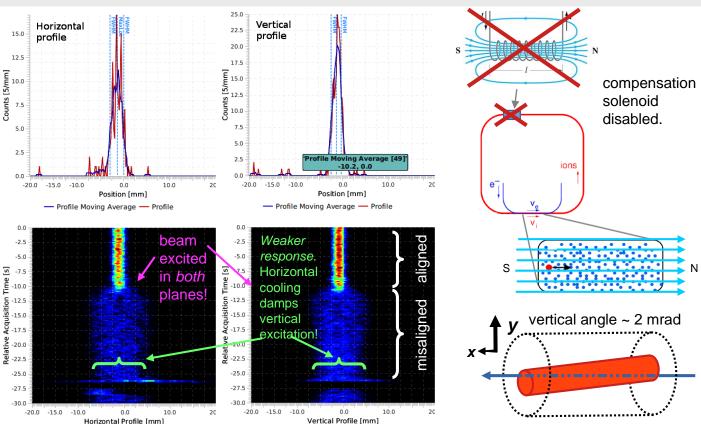
Claude Krantz – CRYRING@ ESR Users Meeting

Betatron coupling

Claude Krantz – CRYRING@ ESR Users Meeting

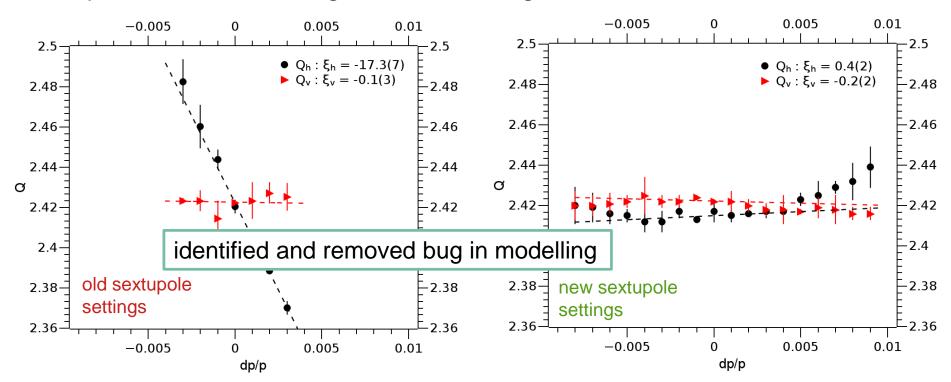

Electron cooling

Claude Krantz – CRYRING@


ESR Users

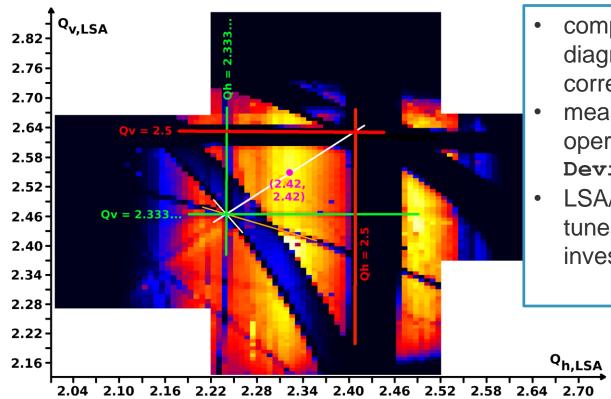
Meeting

Electron cooling


Claude Krantz – CRYRING@ ESR Users Meeting

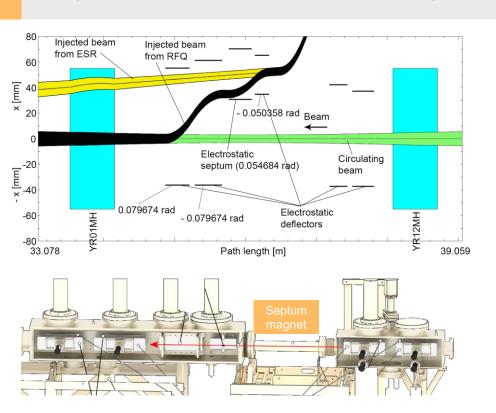
Sextupole settings to correct Chromaticity

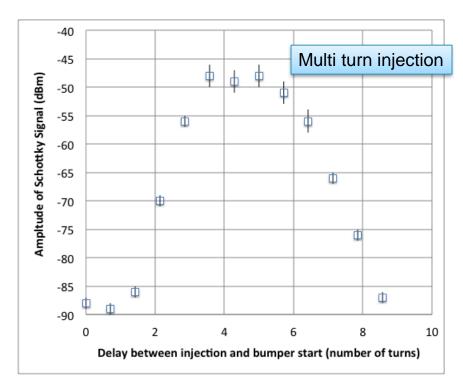
$$\xi = \frac{dQ}{d(\delta p/p)}$$


improved correction = larger accessible range = more robust acceleration

C. Krantz, R. Hess, I. Kraus et al.

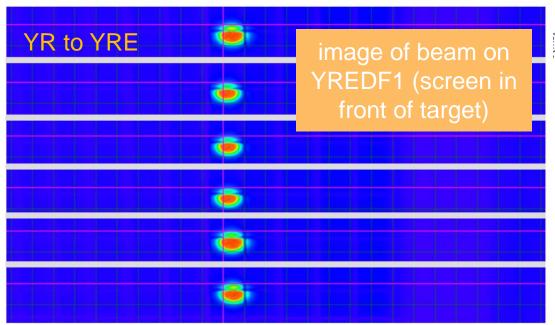
Tune Diagram

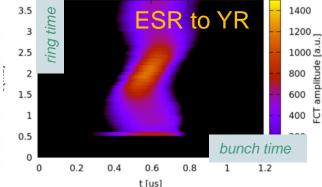




- complete stability diagram (tune diagram) incl. proper chrom. correction
- measured during nights (no operator intervention) using
 DeviceAutomator
- LSA/Model vs. Reality offset of tunes observed before, investigation ongoing

Injection – Multiturn from local injector, Fast from ESR FAIR == 1


Design by MSL, calc.+figure Oleksii Gorda


Svetlana Feodotva, Nikita Kotovsky, et al.

Bunch-to-Bucket and RF synchronisation

below: images of six consecutive extractions – the beam is always well centered

- tested in parallel and for the running CMAT exp.
- extraction in sync with ring RF = reproducible position in kicker field = stable position on target

A common effort!

External Partners

HIJ Jena Stockholm University Krakow University **KVI** Groningen

GSI/FAIR Expert Groups

Engineering

Facility

Mechanical Design/Integration

Ion Sources

System Design

UNILAC RF

Ring RF

Accelerator Physics

Z. Andelkovic, N. Bauer, A.

Dolinskyy, W. Enders, M.

Källberg, Th. Köhler, N.

Kotovskiy, M. Lestinsky, S. Litvinov, Y. Litvinov, J. Mohr, I.

Stöhlker, G. Vorobjev, N.

Winckler, ... and many more.

Engström, S. Fedotova, B.

Franzke, M. Frey, W. Geithner, O.

Gorda, L. Heyl, P. Hülsmann, A.

Pschorn, A. Reiter, G. Riefert, J. Roßbach, A. Simonsson, T.

Sieber, J. Sjöholm, M. Steck, Th.

Bräuning-Demian, R. Bär, H. Danared, C. Dimopoulou, O.

SPARC **APPA** collaboration

BMBF (Ministry)

,Verbundforschung"

Atomic Physics

- Decelerator **Experiments**
- SPARC Det.

Accelerator Operations

- **Decelerators**

Assembly

Beam Cooling

Magnets

Vacuum

Power Suppl.

Beam Diagns.

Controls

THANK YOU!!

Part of "FAIR Phase-0" experimental program

GPAC'22 Proposals for local and ESR beams

	GPAC call 2022: CRYRING@ESR proposal overview							
Proposal ID	Announced title	~	Spokesperson + 1	î li	ntitute	~	Country v	Beam ▼
G-22-00070	Dielectronic and trielectronic recombina	ati	Biela-Nowaczyk, Weronika	ι	J Krakow		PL	S12+
G-22-00072	Commissioning and First Storage Ring E	Хţ	Brandau, Carsten	G	SSI		DE	Xe54+
G-22-00026	Investigating the destruction of deutering	un	Bruno, Carlo	ι	J Edinburgh		UK	p+
G-22-00086	Ultra-high resolution study of the 150(α,	Bruno, Carlo	ι	J Edinburgh		UK	160, 150
G-22-00087	Astrophysical nuclear reactions between	n I	Bruno, Carlo	ι	J Edinburgh		UK	6Li
G-22-00029	X-ray spectroscopy of slow Xe54+ + Xe	со	Hillenbrand, Pierre-Michel	τ	J Giessen		DE	Xe54+
G-22-00047	Absolute rate coefficients from dielectro	on	Lestinsky, Michael	G	SSI		DE	S3+, Ne3+
G-22-00152	Systematic measurement of electron cap	ptı	Petridis, Nikolaos	G	SSI		DE	Xe54+, U9x+
G-22-00159	Fast Ion – Slow Ion Collisions for Atomic	c F	Prigent, C.; Lamour, Emily	II	NSP Paris		FR	Ar18+
G-22-00058	Ion beam and level population dynamic	cs i	Sanchez, Rodolfo	G	SSI		DE	Mg+
G-22-00025	High-resolution electron-ion collision sp	ре	Schippers, Stefan	ι	J Giessen		DE	U88+ (Xe50+)
G-22-00037	Atomic processes in the wake of neutro	n-	Schippers, Stefan	ι	J Giessen		DE	W14-17+
G-22-00134	High-Resolution Spectroscopy of X-Ray	Tr	Weber, Günter	H	-IIJ		DE	U90+

+ MAT-PAC Experiments

Coordinator CRYRING @ESR Experiments: M. Lestinsky

Summary

- CRYRING@ESR routinely provides user beam time
- All systems work well, however, aging components require(d) some action
- Control system developed since 2015 into a mature system
- vacuum conditions still improving
- challenging experiments ahead (complexity of installation, intensity)

SR	
Щ	S
B	iție
	iun
₹ F	ort
2	0

	Project	Benefits	Downsides
1	Linac RF	Expand m/q to 45 – more ion species from local source accessible	
2	E-Cooler magnet replacement	Much more reliable operationadopted design to gained knowledge	expensive, needs long lead time
3a	new Ion Source	Higher charge states in stand alone mode	possible only with external funding (ELEMENTS)
3b	Ring-RF	Less losses (50%) due to speedier acceleration or deceleration	needed for few cases only (C+, HCl deceleration)

Thank you for your attention

