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What are neutron stars?
► Remnants of stellar evolution: NSs are collapsed cores of massive stars formed in 

core-collapse supernovae

► Typical mass 1.2 … 2.0 Msun, typical radius 10 … 15 km → mean density exceeds 
nuclear density (3*1014 g/cm3) !!! 

→ extreme astrophysical objects → NS are made of high-density matter !!

► A few 1000 NSs are observed: gamma, x-rays, UV, optical, … radio

most as radio pulsars, i.e. with extremely periodic beamed radio emission (very stable 
rotator → clock) – light house effect

► Many, many more are expected to exist (invisible)

► More than 10 double NS systems known (containing at least one pulsar)

► Other binaries systems with white dwarfs

► Orbital modulation of radio emission allows very                                                                  
precise mass measurements in binary systems

► Accretion processes, high magnetic fields, NS cooling, …

► NSs as precursor of stellar black holes

ESO/VLT
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Neutron star mergers - overview



A break-through in astrophysics

► GW170817 first unambiguously detected NS merger

► Multi-messenger observations: gravitational waves (GWs), gamma, X-rays, UV, optical, 
IR, radio 

→ settled many open/tentative/speculative ideas in the context of NS mergers !!!

Detection August 17, 2017 by 
LIGO-Virgo network

→ GW data analysis providing 
approximate sky location

→ follow-up observations - 
probably largest coordinated 
observing campaign in astronomy 
(observations/time); starting 
immediately after – still ongoing 
in X-rays and radio

Advanced LIGO

= gravitational wave event on August 17, 2017



NS mergers as probes for fundamental physics

► Properties of NS and NS binary population, host galaxies

► Origin of short gamma-ray bursts (and related emission)

► Origin of heavy elements like gold, uranium, platinum

► Origin of electromagnetic transient (kilonova, marconova)

► Properties of nuclear matter / NS structure

► Occurrence of QCD phase in NS

► Independent constraint on Hubble constant

► … !!!
Pic star forming 
region

Star-forming region, ESA/Spire



NS mergers as probes for fundamental physics

► Properties of NS and NS binary population, host galaxies

► Origin of short gamma-ray bursts (and related emission)

► Origin of heavy elements like gold, uranium, platinum

► Origin of electromagnetic transient (kilonova, marconova)

► Properties of nuclear matter / NS structure

► Occurrence of QCD phase in NS

► Independent constraint on Hubble constant

► … !!!

Covino 2007



NS mergers as probes for fundamental physics

► Properties of NS and NS binary population, host galaxies

► Origin of short gamma-ray bursts (and related emission)

► Origin of heavy elements like gold, uranium, platinum

► Origin of electromagnetic transient (kilonova, marconova)

► Properties of nuclear matter / NS structure

► Occurrence of QCD phase in NS

► Independent constraint on Hubble constant

► … !!!



NS mergers as probes for fundamental physics

► Properties of NS and NS binary population, host galaxies

► Origin of short gamma-ray bursts (and related emission)

► Origin of heavy elements like gold, uranium, platinum

► Origin of electromagnetic transient (kilonova, marconova)

► Properties of nuclear matter / NS structure

► Occurrence of QCD phase in NS

► Independent constraint on Hubble constant

► … !!!

Villar et al. 2017

Em counterpart of GW170817



NS mergers as probes for fundamental physics

► Properties of NS and NS binary population, host galaxies

► Origin of short gamma-ray bursts (and related emission)

► Origin of heavy elements like gold, uranium, platinum

► Origin of electromagnetic transient (kilonova, marconova)

► Properties of nuclear matter / NS structure

► Occurrence of QCD phase in NS

► Independent constraint on Hubble constant

► … !!!

Weber 2004

Hebeler & Schwenk 2014



NS mergers as probes for fundamental physics 

► Properties of NS and NS binary population, host galaxies

► Origin of short gamma-ray bursts (and related emission)

► Origin of heavy elements like gold, uranium, platinum

► Origin of electromagnetic transient (kilonova, marconova)

► Properties of nuclear matter / NS structure

► Occurrence of QCD phase in NS

► Independent constraint on Hubble constant

► … !!!

GSI



NS mergers as probes for fundamental physics

► Properties of NS and NS binary population, host galaxies

► Origin of short gamma-ray bursts (and related emission)

► Origin of heavy elements like gold, uranium, platinum

► Origin of electromagnetic transient (kilonova, marconova)

► Properties of nuclear matter / NS structure

► Occurrence of QCD phase in NS

► Independent constraint on Hubble constant

► … !!!

Abbott et al 2017

→ just from this list it is obvious that NS 
mergers can contribute significantly to 
fundamental physics , if we understand 
theory to interpret observations



Outline

► Understanding properties of hot and dense matter from mergers

- Finite-size effects affect orbital motion

- Black hole formation in neutron star mergers

- Postmerger GW oscillations

► Quark matter in neutron star mergers

► Nucleosynthesis of heavy elements in ejecta of NS mergers

→ ongoing work on r-process and kilonovae

► Many interesting and important aspects of NSMs cannot be covered:

- Gamma-ray bursts, X-ray emission, binary population, Hubble constant, ...



Inspiral of NS binary

Neutron star merger

Prompt formation of a
BH + torus

Formation of a differentially 
rotating massive NS

Rigidly rotating 
(supermassive) NS

(stable or long-lived)

Delayed collapse
to a BH + torus

dependent on
EoS, Mtot

dependent on
EoS, Mtot

~100 Myrs

ms ms

10-100 ms



Binary masses measured by GWs !!!

Generally:

- chirp mass  and total mass measured accurately

- mass ratio and component masses less

(but instrument sensitivity increases !)

Abbott et al 2017

GW170817

Distance: 40 Mpc ~ 140 Mega light years



More (puzzling) events

GW190814

GW190415
► No em counterparts (recall distance)

► Pretty high mass compared to known 
NSs !

► What’s the nature of the 2.6 Msun 
object?

- BH → no mass gap ?

- slowly rot. NS → high Mmax

- rapidly rot. NS → why rotation?



The holy grail of NS physics:

Everything depends on the EoS !!!



Different approaches to high density matter

GSI/FAIR

equ iva len t

Weber 2004
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Neutron stars

► Important here: EoS and stellar structure (mass-radius relation) uniquely linked !

                                All neutron stars follow the same M-R relation / EoS !

                                →  measure / constrain stellar properties → EoS

Tolman, Oppenheimer, Volkoff eqs. (1939) → slang: TOV properties  = stellar parameters

H
ebeler &

 S
chw

en k 2014



Stellar properties of NS are key

► Narrow down stellar properties of NSs:      only one true mass-radius curve

   →  key parameter e.g. radius at given mass or maximum mass

► Many more ideas and measurements

► Include different uncertainties / usually hard to assess all uncertainties

X-ray timing NICER

Pulsar mass 
measurements

Multi-messenger 
interpretation of 
GW170817

Finite-size effects 
in GW inspiral 
(GW170817)

Reddish bands = excluded



Mergers and EoS/NS constraints

Basic idea:       EoS affects structure and dynamics and thus observables

Three complementary strategies:   

► Finite-size effects during the inspiral → accelerate inspiral compared to BH-BH

- strong signal – weaker EoS effect

► Multi-messenger interpretation (many different ideas, can be quite model-dependent)

- strong EoS impact – weaker signal (at higher frequencies)

► Oscillations of the postmerger remnant (not yet measured but promising for future)

+ many efforts to combine these constraints with other measurements, e.g. Coughlin et al. 2018,  
Dietrich et al 2020, Raaijmakers et al 2021, Huth et al. 2022

Recall:   binary masses are simple to measure



Finite-size effects during late GW inspiral

► For close orbits → finite size effects:

GW differs for point particles and extended bodies

→ larger stars lead to “faster” inspiral



Finite-size effects during late GW inspiral

► Encoded by “tidal deformability”

► Accelerates inspiral

► GW170817 excludes  R > 13.5 km 

Larger star

Smaller star

e.g. Read et al. 2013 Merger time of point particle

Abbott et al. 2017, 2019

see also later publications by Ligo/Virgo 
collaboration, De et al. 2018

→ better constraints in future

file:///home/localadmin_abauswein/work/pics/ls12135_400K_1920x1080_a.avi


Multi-messenger constraints:

BH formation in NS mergers

Threshold binary mass



Collapse behavior

► Collapse movie

Understanding of BH formation in mergers  [e.g. Shibata 2005, Baiotti et al. 
2008, Hotokezaka et al. 2011, Bauswein et al. 2013, Bauswein et al 2017, Agathos et al. 
2020, Bauswein et al. 2020]



Inspiral

Prompt collapse to BH

No or delayed collapse to BH

Total binary mass M
tot

Threshold binary 
mass M

thres

Mthres  -  EoS dependent !!!

Collapse behavior

+ strong postmerger 
GW emission

+ bright kilonova

+ ….

+ dim kilonova

+ ….



Collapse behavior – BH formation

► Critical for interpretation of GW emission, gamma-ray bursts, kilonova, …

► Strong EoS dependence expressed through stellar paramters

(based on ~ 400 HPC relativistic hydrodynamics merger simulations)

Bauswein et al., PRL (2020); Bauswein et al., PRD (2021)

Dots: model EoSs



Example: NS radius constraint from GW170817

► If GW170817 did not directly form BH as indicated by relatively bright kilonova

► NSs cannot be too small/ EoS too soft because this resulted in a prompt collapse

► Relatively simple and robust: Quantitatively based on threshold binary mass for 
prompt collapse

Bauswein et al. 2017, 2021

See also Radice et al 2018, Koeppel et al 2019, ... for similar constraints on radius/ tidal deformability

Soares-Santos et al 2017

→ Inferred ejecta mass 0.02-0.05 Msun



Future prospects:  postmerger GW emission



► Simulations by a relativistic moving mesh hydrodynamics code (Lioutas et al. 2022, 
based on Arepo by V. Springel)

1.35-1.35 Msun, DD2 EoS                                                                  Lioutas et al. 2022



Postmerger GW signal
► Dominated by a single frequency

► But several subdominant modes excited

→ GW asteroseismology

Lioutas et al. 2022

Soultanis et al. 2022



all 1.35-1.35 simulations

M
1
/M

2
 known 

from inspiral

Pure TOV/EoS property => Radius measurement via fpeak

A.B., et al. (2012)

GW data analysis critical → simulated injections → detectable at a few 10 Mpc @ design 
sensitivity (see Clark et al 2016, Chatzioannou et al. 2017, Torres-Riva et al 2019)

See also Takami et al. 2015, Bernuzzi et al. 2015, ...

Simulated injections

Chatziioannou et al. (2017)



Quark matter in NS mergers ?



Phase diagram of matter of strongly interacting matter

Does the phase transition to quark-gluon plasma occur (already) in 
neutron stars or only at higher densities?

GSI/FAIR



Bauswein et al. 2019



NS merger in the phase diagram

► Simulation: 1.35-1.35 Msun merger, EoS model with 1st order phase transition (EoS 
from Wroclaw group); see also, e.g., Most el al. 2019, Hanauske et al. 2021, ...

Blacker et al. 2020



Merger simulations with quark matter core
► GW spectrum 1.35-1.35 Msun

But: a high frequency on its own may not yet be characteristic for a phase transition

→ unambiguous signature 

A.B. et al. 2019

contact



Signature of 1st order phase transition

► Characteristic increase of postmerger frequency compared to tidal deformability

→ evidence of presence of quark matter core

→ in any case constraint on onset density of hadron-quark phase transition

A.B. et al 2019

from the inspiral

from postmerger

with strong 
1st order PT

Green models with 
phase transition to 
quark matter 
[Fischer et al. 2018]



QCD phase transition from collapse behavior

► Quark matter may lead to characteristic reduction of Mthres

► Already single events may indicate presence of quark matter

Measurable from inspiral + 
information on merger product

Measurable 
from GW 
inspiral

Evidence for 
quark matter

A.B. et al 2020



R-process nucleosynthesis and kilonovae

Where and how do heavy elements form?

Early works on NS mergers: Lattimer+ 1974, Freiburghaus+ 1999, Li&Paczynski 1998, Metzger+ 2010, Goriely+ 2011, 
Korobkin+ 2012, Bauswein+2013, Fernandez+2013, Perego+ 2014, Wanajo et al 2014, Just+2015, Mendoz-Temis+2015, 
… and many many more



Optical/IR emission from GW170817 detected

► GW signal → approximate sky location

► Follow up observation (UV, optical, IR) 
starting ~12 h after merger

- light curve evolves on time scale of days

generated by unbound matter: ejecta

→ ejecta masses, velocities, opacities

(Metzger et al. 2010, ...)

Soares-Santos 
et al 2017

Abbott et al. 2017



Importance of optical/IR emission from GW170817

► GW signal → undoubtful a NS merger

► Properties of light curve in excellent agreement with r-
process heated ejecta

→ first and only confirmed site of r-process – after 
decades of research and observations pointing to very 
different astrophysical sites

→ ejecta mass (a few 0.01 Msun) and other properties 
consistent with results from simulations - remarkable 
agreement considering the challenges to model ejecta

→ estimated rate * ejecta mass = compatible with mergers 
being main/only source of heavy r-process elements

► However: only coarse models, order-of-magnitude 

estimates, uncertain ejecta paramters, unknown 

composition,  ... 

→ many details still unclear 

Arcavi et al. 2017

Bauswein et al. 2013
Cowperthwaite et al. 2017 (DECam, Gemini-South, HST observations)



Spectroscopic identification of r-process 
► Kilonova roughly follows black body

► Features imprinted, but hard to interpret:

- blue-shift  (v ~ 0.3c)

- line lists of heavy elements limited

► Strong absorption feature:  Strontium

(which is a r-process element)

→ next piece of evidence of r-process in 
NS mergers !!!

→ more information on geometry, 
stratification etc. from spectroscopy

Watson et al. 2019



Challenges and open questions

Nuclear reactions



Challenges and open questions

► What was the composition of the outflow ? Was it solar ?

► Are there other sites contributing to the observed solar abundance ?

► What are the detailed (plasma/nuclear/atomic) physics in the outflow ?

► Interpretation of current and future observations (James Webb, ELT )

► Modeling of different ejecta components / mass ejection channels

► Nuclear physics of the r-process

► Radiation transfer in the expanding ejecta flow

► Atomic processes in the outflow / opacities / atomic data

→ HeavyMetal consortium: GSI – Copenhagen – Dublin – Belfast

Open PhD and PD positions (ERC funded)



Consistent models of all ejecta components
► Different ejecta components of comparable mass ejected by different mechanisms on 

different time scales  → challenging to model: multi-scale multi-physics problem  - 
first models on the way – Just, Vijayan, Xiong et al. 2023 (see also Kiuchi et al 2022, 

Fujibayashi et al. 2022 for short or very long-lived models; and numerous earlier studies focusing 
on individual components)
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3d Radiative transfer modeling

► Towards full modeling pipeline of kilonovae (Collins et al, subm. to MNRAS 2022, ….)

NS merger simulations → nuclear network calculation → 3d radiative transfer

► i.e. consistently connect theoretical models with observations to infer underlying 
processes: details of r-process: final abundance pattern, masses, velocity structure, 
path of r-process and involved reactions/nuclei

Collins et al., subm. to MNRAS 2022



Geometry of the kilonova

► Spectral features (like Sr) combination of absorption along the line of sight and 
emission scattered into he line of sight ( = P Cygni feature)

► Allows to determine outflow velocity along light of sight (Doppler blue-shifted)

expanding
BB photosp

opaque

atmosphere

P Cygni feature: absorption along line of sight 
(blue-shifted) 
+ scattering into line of sight (rest wavelength) 

Watson et al. 2019



Geometry of the kilonova

► Black body emission

► Stefan-Boltzmann law:  

- we know T and L from spectrum

- and explosion time

►

→ Kilonova was highly spherical

Sneppen et al., to appear in Nature (2023)



Geometry of kilonova

► Kilonova of GW170817 was highly spherical

- not impossible but quite surprising

→ just a coincidence or physics that make it 

     spherical (no obvious mechanism)

→ potential to constrain ejecta models

BB luminosity depends on distance !

(modeling of line shape provides                independently)

→ best measured distance of GW170817 so far

→ future constraints of Hubble constant

Sneppen et al., to appear in Nature (2023)

CMB SN Ia

Rad. transfer: C. Collins; merger simulation: V. Vijayan

file:///home/localadmin_abauswein/work/pics/Arepo/Arepo-movie-2.mp4


Summary

► NS mergers connect to several different fundamental questions: origin of elements, time-domain astronomy, gamma-ray 

bursts, cosmology, properties of high-density matter, …

► Many new or upgraded instruments become operational: upgraded Advanced Ligo, James Webb Space Telescope, Extremely 
Large Telescope

► NS merger forge heavy elements through r-process (likely the dominant channel)

→ kilonovae are key to understand nucleosynthesis

→ can provide independent information on distance and Hubble constant

► Stellar parameters inform about EoS – already a number of constraints exist from different observations / calculations

► Finite-size effects during insprial: EoS cannot be too stiff

► Prompt BH formation in NS mergers as most basic characteristic

- Mthres encodes valuable information about high-density EoS

- Multi-messeneger interpretation of GW170817:   EoS cannot be too soft

► Postmerger GW oscillations → future EoS constraints

- Quark matters leaves characteristic imprint on GWs

► ….
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