Supported by ERC through Starting Grant no. 759253

European Research Council Established by the European Commission

From quarks to black holes: micro- and macrophysics of neutron star mergers

Kolloquium, GSI, 31/01/2023

Andreas Bauswein

(GSI Darmstadt, HFHF)

What are neutron stars?

- Remnants of stellar evolution: NSs are collapsed cores of massive stars formed in core-collapse supernovae
- ► Typical mass 1.2 ... 2.0 M_{sun}, typical radius 10 ... 15 km → mean density exceeds nuclear density (3*10¹⁴ g/cm³) !!!

 \rightarrow extreme astrophysical objects \rightarrow NS are made of high-density matter !!

► A few 1000 NSs are observed: gamma, x-rays, UV, optical, ... radio

most as radio pulsars, i.e. with extremely periodic beamed radio emission (very stable rotator \rightarrow clock) – light house effect

- Many, many more are expected to exist (invisible)
- More than 10 double NS systems known (containing at least one pulsar).
- Other binaries systems with white dwarfs
- Orbital modulation of radio emission allows very precise mass measurements in binary systems
- ► Accretion processes, high magnetic fields, NS cooling, ...
- NSs as precursor of stellar black holes

What are neutron stars?

- Remnants of stellar evolution: NSs are collapsed cores of massive stars formed in core-collapse supernovae
- ► Typical mass 1.2 ... 2.0 M_{sun}, typical radius 10 ... 15 km → mean density exceeds nuclear density (3*10¹⁴ g/cm³) !!!

 \rightarrow extreme astrophysical objects \rightarrow NS are made of high-density matter !!

► A few 1000 NSs are observed: gamma, x-rays, UV, optical, ... radio

most as radio pulsars, i.e. with extremely periodic beamed radio emission (very stable rotator \rightarrow clock) – light house effect

- Many, many more are expected to exist (invisible)
- More than 10 double NS systems known (containing at least one pulsar)
- Other binaries systems with white dwarfs
- Orbital modulation of radio emission allows very precise mass measurements in binary systems
- ► Accretion processes, high magnetic fields, NS cooling, ...
- NSs as precursor of stellar black holes

M. Kramer

Neutron star mergers - overview

A break-through in astrophysics

- = gravitational wave event on August 17, 2017

- GW170817 first unambiguously detected NS merger
- Multi-messenger observations: gravitational waves (GWs), gamma, X-rays, UV, optical, IR, radio

Detection August 17, 2017 by LIGO-Virgo network

 \rightarrow GW data analysis providing approximate sky location

→ follow-up observations probably largest coordinated observing campaign in astronomy (observations/time); starting immediately after – still ongoing in X-rays and radio

 \rightarrow settled many open/tentative/speculative ideas in the context of NS mergers !!!

- Properties of NS and NS binary population, host galaxies
- Origin of short gamma-ray bursts (and related emission)
- Origin of heavy elements like gold, uranium, platinum
- Origin of electromagnetic transient (kilonova, marconova)
- Properties of nuclear matter / NS structure
- Occurrence of QCD phase in NS
- Independent constraint on Hubble constant
- ► ... !!!

Star-forming region, ESA/Spire

- Properties of NS and NS binary population, host galaxies
- Origin of short gamma-ray bursts (and related emission)
- Origin of heavy elements like gold, uranium, platinum
- Origin of electromagnetic transient (kilonova, marconova)
- Properties of nuclear matter / NS structure
- Occurrence of QCD phase in NS
- Independent constraint on Hubble constant
- ▶ ... !!!

- Properties of NS and NS binary population, host galaxies
- Origin of short gamma-ray bursts (and related emission)
- Origin of heavy elements like gold, uranium, platinum
- Origin of electromagnetic transient (kilonova, marconova)
- Properties of nuclear matter / NS structure
- Occurrence of QCD phase in NS
- Independent constraint on Hubble constant
- ► ... !!!

- Properties of NS and NS binary population, host galaxies
- Origin of short gamma-ray bursts (and related emission)
- Origin of heavy elements like gold, uranium, platinum
- Origin of electromagnetic transient (kilonova, marconova)
- Properties of nuclear matter / NS structure
- Occurrence of QCD phase in NS
- Independent constraint on Hubble constant
- ▶ ... !!!

Villar et al. 2017

- Properties of NS and NS binary population, host galaxies
- Origin of short gamma-ray bursts (and related emission)
- Origin of heavy elements like gold, uranium, platinum
- Origin of electromagnetic transient (kilonova, marconova)
- Properties of nuclear matter / NS structure
- Occurrence of QCD phase in NS
- Independent constraint on Hubble constant
- ► ... !!!

Hebeler & Schwenk 2014

- Properties of NS and NS binary population, host galaxies
- Origin of short gamma-ray bursts (and related emission)
- Origin of heavy elements like gold, uranium, platinum
- Origin of electromagnetic transient (kilonova, marconova)
- Properties of nuclear matter / NS structure
- Occurrence of QCD phase in NS
- Independent constraint on Hubble constant
- ► ... !!!

- Properties of NS and NS binary population, host galaxies
- Origin of short gamma-ray bursts (and related emission)
- Origin of heavy elements like gold, uranium, platinum
- Origin of electromagnetic transient (kilonova, marconova)
- Properties of nuclear matter / NS structure
- Occurrence of QCD phase in NS
- Independent constraint on Hubble constant
- ▶ ... !!!

Abbott et al 2017

Outline

- Understanding properties of hot and dense matter from mergers
 - Finite-size effects affect orbital motion
 - Black hole formation in neutron star mergers
 - Postmerger GW oscillations
- Quark matter in neutron star mergers
- Nucleosynthesis of heavy elements in ejecta of NS mergers
 - \rightarrow ongoing work on r-process and kilonovae

- Many interesting and important aspects of NSMs cannot be covered:
 - Gamma-ray bursts, X-ray emission, binary population, Hubble constant, ...

GW170817

	Low-spin priors $(\chi \le 0.05)$
Primary mass m_1	$1.36-1.60 \ M_{\odot}$
Secondary mass m_2	$1.17 - 1.36 M_{\odot}$
Chirp mass \mathcal{M}	$1.188^{+0.004}_{-0.002} M_{\odot}$
Mass ratio m_2/m_1	0.7–1.0
Total mass $m_{\rm tot}$	$2.74^{+0.04}_{-0.01} M_{\odot}$
Radiated energy $E_{\rm rad}$	$> 0.025 M_{\odot} c^2$
Luminosity distance $D_{\rm L}$	40^{+8}_{-14} Mpc
Viewing angle Θ	≤ 55°
Using NGC 4993 location	$\leq 28^{\circ}$
Combined dimensionless tidal deformability $\tilde{\Lambda}$	≤ 800
Dimensionless tidal deformability $\Lambda(1.4M_{\odot})$	≤ 800

Binary masses measured by GWs !!!

Generally:

- chirp mass and total mass measured accurately
- mass ratio and component masses less

(but instrument sensitivity increases !)

Distance: 40 Mpc ~ 140 Mega light years

Abbott et al 2017

More (puzzling) events

- No em counterparts (recall distance)
- Pretty high mass compared to known NSs !
- What's the nature of the 2.6 Msun object?
 - BH \rightarrow no mass gap ?
 - slowly rot. NS \rightarrow high Mmax
 - rapidly rot. NS \rightarrow why rotation?

Table 1 Source Properties for GW190425				
GW190415	Low-spin Prior $(\chi < 0.05)$	High-spin Prior $(\chi < 0.89)$		
Primary mass m_1	1.60–1.87 M_{\odot}	$1.61-2.52~M_{\odot}$		
Secondary mass m_2	$1.46 - 1.69 M_{\odot}$	$1.12-1.68 M_{\odot}$		
Chirp mass \mathcal{M}	$1.44^{+0.02}_{-0.02}M_{\odot}$	$1.44^{+0.02}_{-0.02}M_{\odot}$		
Detector-frame chirp mass	$1.4868^{+0.0003}_{-0.0003}M_{\odot}$	$1.4873^{+0.0008}_{-0.0006}~M_{\odot}$		
Mass ratio m_2/m_1	0.8 - 1.0	0.4 - 1.0		
Total mass m _{tot}	$3.3^{+0.1}_{-0.1} \mathrm{M}_{\odot}$	$3.4^{+0.3}_{-0.1}M_{\odot}$		
Effective inspiral spin parameter χ_{eff}	$0.012\substack{+0.01\\-0.01}$	$0.058\substack{+0.11\\-0.05}$		
Luminosity distance $D_{\rm L}$	159 ⁺⁶⁹ ₋₇₂ Mpc	159 ⁺⁶⁹ ₋₇₁ Mpc		
Combined dimensionless tidal deformability $\tilde{\Lambda}$	≼600	≤1100		

	EOBNR PHM	Phenom PHM	Combined
Primary mass m_1/M_{\odot}	$23.2^{+1.0}_{-0.9}$	$23.2^{+1.3}_{-1.1}$	$23.2^{+1.1}_{-1.0}$
Secondary mass m_2/M_{\odot} GW190814	$2.59\substack{+0.08\\-0.08}$	$2.58^{+0.09}_{-0.10}$	$2.59\substack{+0.08\\-0.09}$
Mass ratio q	$0.112\substack{+0.008\\-0.008}$	$0.111^{+0.009}_{-0.010}$	$0.112\substack{+0.008\\-0.009}$
Chirp mass \mathcal{M}/M_{\odot}	$6.10\substack{+0.06\\-0.05}$	$6.08\substack{+0.06\\-0.05}$	$6.09\substack{+0.06\\-0.06}$
Total mass M/M_{\odot}	$25.8\substack{+0.9\\-0.8}$	$25.8^{+1.2}_{-1.0}$	$25.8^{+1.0}_{-0.9}$
Final mass $M_{\rm f}/M_{\odot}$	$25.6^{+1.0}_{-0.8}$	$25.5^{+1.2}_{-1.0}$	$25.6^{+1.1}_{-0.9}$
Upper bound on primary spin magnitude χ_1	0.06	0.08	0.07
Effective inspiral spin parameter $\chi_{\rm eff}$	$0.001\substack{+0.059\\-0.056}$	$-0.005\substack{+0.061\\-0.065}$	$-0.002\substack{+0.060\\-0.061}$
Upper bound on effective precession parameter χ_p	0.07	0.07	0.07
Final spin $\chi_{\rm f}$	$0.28\substack{+0.02\\-0.02}$	$0.28\substack{+0.02\\-0.03}$	$0.28\substack{+0.02\\-0.02}$
Luminosity distance $D_{\rm L}/{\rm Mpc}$	235_{-45}^{+40}	249^{+39}_{-43}	241^{+41}_{-45}
Source redshift z	$0.051\substack{+0.008\\-0.009}$	$0.054\substack{+0.008\\-0.009}$	$0.053\substack{+0.009\\-0.010}$

The holy grail of NS physics: Everything depends on the EoS !!!

Different approaches to high density matter

$$\frac{dr}{dr} = -\frac{GM\rho}{r^2} \left(1 + \frac{P}{c^2\rho}\right) \left(1 + \frac{4\pi r^3 P}{Mc^2}\right) \left(1 - \frac{2GM}{c^2 r}\right)^{-1}$$
(1)
(1)
(1)
(2)

Tolman, Oppenheimer, Volkoff eqs. (1939) \rightarrow slang: TOV properties = stellar parameters

Stellar properties of NS are key

- Many more ideas and measurements
- Include different uncertainties / usually hard to assess all uncertainties

Mergers and EoS/NS constraints

Basic idea: EoS affects structure and dynamics and thus observables Three complementary strategies:

• Finite-size effects during the inspiral \rightarrow accelerate inspiral compared to BH-BH

Multi-messenger interpretation (many different ideas, can be quite model-dependent)

Oscillations of the postmerger remnant (not yet measured but promising for future)

+ many efforts to combine these constraints with other measurements, e.g. Coughlin et al. 2018, Dietrich et al 2020, Raaijmakers et al 2021, Huth et al. 2022

Finite-size effects during late GW inspiral

- ► For close orbits → finite size effects:
 - GW differs for point particles and extended bodies
 - \rightarrow larger stars lead to "faster" inspiral

Finite-size effects during late GW inspiral

- Encoded by "tidal deformability"
- Accelerates inspiral
- GW170817 excludes R > 13.5 km

$$\Lambda(M) = \frac{2}{3}k_2(M)\left(\frac{c^2R}{GM}\right)^2$$

Abbott et al. 2017, 2019 see also later publications by Ligo/Virgo collaboration, De et al. 2018

 \rightarrow better constraints in future

Merger time of point particle

Multi-messenger constraints: BH formation in NS mergers Threshold binary mass

Collapse behavior

Understanding of BH formation in mergers [e.g. Shibata 2005, Baiotti et al. 2008, Hotokezaka et al. 2011, Bauswein et al. 2013, Bauswein et al 2017, Agathos et al. 2020, Bauswein et al. 2020]

Collapse behavior

M_{thres} - EoS dependent !!!

Collapse behavior – BH formation

- ► Critical for interpretation of GW emission, gamma-ray bursts, kilonova, ...
- Strong EoS dependence expressed through stellar paramters

 $M_{\rm thres} = M_{\rm thres}(M_{\rm max}, R_{1.6}) = aM_{\rm max} + bR_{1.6} + c$

(based on ~ 400 HPC relativistic hydrodynamics merger simulations)

Bauswein et al., PRL (2020); Bauswein et al., PRD (2021)

Example: NS radius constraint from GW170817

- If GW170817 did not directly form BH as indicated by relatively bright kilonova
- NSs cannot be too small/ EoS too soft because this resulted in a prompt collapse
- Relatively simple and robust: Quantitatively based on threshold binary mass for prompt collapse

 \rightarrow Inferred ejecta mass 0.02-0.05 Msun

Bauswein et al. 2017, 2021

Future prospects: postmerger GW emission

 Simulations by a relativistic moving mesh hydrodynamics code (Lioutas et al. 2022, based on Arepo by V. Springel)

1.35-1.35 Msun, DD2 EoS

Lioutas et al. 2022

Postmerger GW signal

- Dominated by a single frequency
- But several subdominant modes excited

\rightarrow GW asteroseismology

Soultanis et al. 2022

Chatziioannou et al. (2017)

GW data analysis critical \rightarrow simulated injections \rightarrow detectable at a few 10 Mpc @ design sensitivity (see Clark et al 2016, Chatzioannou et al. 2017, Torres-Riva et al 2019) See also Takami et al. 2015, Bernuzzi et al. 2015, ...

Quark matter in NS mergers ?

Phase diagram of matter of strongly interacting matter

GSI/FAIR

Does the phase transition to quark-gluon plasma occur (already) in neutron stars or only at higher densities?

NS merger in the phase diagram

Simulation: 1.35-1.35 Msun merger, EoS model with 1st order phase transition (EoS from Wroclaw group); see also, e.g., Most el al. 2019, Hanauske et al. 2021, ...

Merger simulations with quark matter core

GW spectrum 1.35-1.35 Msun

But: a high frequency on its own may not yet be characteristic for a phase transition

 \rightarrow unambiguous signature

Signature of 1st order phase transition

- Characteristic increase of postmerger frequency compared to tidal deformability
 - \rightarrow evidence of presence of quark matter core
 - \rightarrow in any case constraint on onset density of hadron-quark phase transition

QCD phase transition from collapse behavior

- ► Quark matter may lead to characteristic reduction of M_{thres}
- ► Already single events may indicate presence of quark matter

R-process nucleosynthesis and kilonovae

Where and how do heavy elements form?

Early works on NS mergers: Lattimer+ 1974, Freiburghaus+ 1999, Li&Paczynski 1998, Metzger+ 2010, Goriely+ 2011, Korobkin+ 2012, Bauswein+2013, Fernandez+2013, Perego+ 2014, Wanajo et al 2014, Just+2015, Mendoz-Temis+2015, ... and many many more

Optical/IR emission from GW170817 detected

- GW signal \rightarrow approximate sky location
- Follow up observation (UV, optical, IR) starting ~12 h after merger
 - light curve evolves on time scale of days generated by unbound matter: ejecta
 → ejecta masses, velocities, opacities
 (Metzger et al. 2010, ...)

Figure 1. NGC4993 grz color composites ($1'_5 \times 1'_5$). Left: composite of detection images, including the discovery z image taken on 2017 August 18 00:05:23 UT and the g and r images taken 1 day later; the optical counterpart of GW170817 is at R.A., decl. =197.450374, -23.381495. Right: the same area two weeks later.

Abbott et al. 2017

Soares-Santos et al 2017

Importance of optical/IR emission from GW170817

- ▶ GW signal \rightarrow undoubtful a NS merger
- Properties of light curve in excellent agreement with rprocess heated ejecta

 \rightarrow first and only confirmed site of r-process – after decades of research and observations pointing to very different astrophysical sites

 \rightarrow ejecta mass (a few 0.01 Msun) and other properties consistent with results from simulations - remarkable agreement considering the challenges to model ejecta

→ estimated rate * ejecta mass = compatible with mergers being main/only source of heavy r-process elements

 $M_{r-process\,Galaxy} = M_{NSNS} R_{NSNS} \tau_{Galaxy}$

- However: only coarse models, order-of-magnitude estimates, uncertain ejecta paramters, unknown composition, ...
 - \rightarrow many details still unclear

Cowperthwaite et al. 2017 (DECam, Gemini-South, HST observations)

Spectroscopic identification of r-process

- Kilonova roughly follows black body
- Features imprinted, but hard to interpret:
 - blue-shift (v ~ 0.3c)
 - line lists of heavy elements limited
- Strong absorption feature: Strontium (which is a r-process element)

 \rightarrow next piece of evidence of r-process in NS mergers !!!

 \rightarrow more information on geometry, stratification etc. from spectroscopy

Watson et al. 2019

Challenges and open questions

Challenges and open questions

- ► What was the composition of the outflow ? Was it solar ?
- Are there other sites contributing to the observed solar abundance ?
- ► What are the detailed (plasma/nuclear/atomic) physics in the outflow ?

- Interpretation of current and future observations (James Webb, ELT)
- Modeling of different ejecta components / mass ejection channels
- Nuclear physics of the r-process
- Radiation transfer in the expanding ejecta flow
- Atomic processes in the outflow / opacities / atomic data

→ HeavyMetal consortium: GSI – Copenhagen – Dublin – Belfast Open PhD and PD positions (ERC funded)

Consistent models of all ejecta components

► Different ejecta components of comparable mass ejected by different mechanisms on different time scales → challenging to model: multi-scale multi-physics problem first models on the way – Just, Vijayan, Xiong et al. 2023 (see also Kiuchi et al 2022, Fujibayashi et al. 2022 for short or very long-lived models; and numerous earlier studies focusing on individual components)

Consistent models of all ejecta components

► Different ejecta components of comparable mass ejected by different mechanisms on different time scales → challenging to model: multi-scale multi-physics problem first models on the way – Just, Vijayan, Xiong et al. 2023 (see also Kiuchi et al 2022, Fujibayashi et al. 2022 for short or very long-lived models; and numerous earlier studies focusing on individual components)

Consistent models of all ejecta components

► Different ejecta components of comparable mass ejected by different mechanisms on different time scales → challenging to model: multi-scale multi-physics problem - first models on the way – Just, Vijayan, Xiong et al. 2023 (see also Kiuchi et al 2022, Fujibayashi et al. 2022 for short or very long-lived models; and numerous earlier studies focusing on individual components)

3d Radiative transfer modeling

- ► Towards full modeling pipeline of kilonovae (Collins et al, subm. to MNRAS 2022,) NS merger simulations \rightarrow nuclear network calculation \rightarrow 3d radiative transfer
- i.e. consistently connect theoretical models with observations to infer underlying processes: details of r-process: final abundance pattern, masses, velocity structure, path of r-process and involved reactions/nuclei

Collins et al., subm. to MNRAS 2022

 $cos(\theta)$

Geometry of the kilonova

- Spectral features (like Sr) combination of absorption along the line of sight and emission scattered into he line of sight (= P Cygni feature)
- Allows to determine outflow velocity along light of sight (Doppler blue-shifted)

- P Cygni feature: absorption along line of sight (blue-shifted)
- + scattering into line of sight (rest wavelength)

Geometry of the kilonova

- Black body emission
- Stefan-Boltzmann law: $L = \sigma A T^4$
 - we know T and L from spectrum
 - and explosion time
- $\blacktriangleright R = v \cdot t \quad A = \pi R^2 \quad \Rightarrow v$

 \rightarrow Kilonova was highly spherical

Sneppen et al., to appear in Nature (2023)

Geometry of kilonova

- Kilonova of GW170817 was highly spherical
 - not impossible but quite surprising
 - → just a coincidence or physics that make it spherical (no obvious mechanism)
 - \rightarrow potential to constrain ejecta models

BB luminosity depends on distance !

(modeling of line shape provides $v_{||} \, / \, v_{\perp}$ independently)

- \rightarrow best measured distance of GW170817 so far
- \rightarrow future constraints of Hubble constant

Rad. transfer: C. Collins; merger simulation: V. Vijayan

Sneppen et al., to appear in Nature (2023)

Summary

- NS mergers connect to several different fundamental questions: origin of elements, time-domain astronomy, gamma-ray bursts, cosmology, properties of high-density matter, ...
- Many new or upgraded instruments become operational: upgraded Advanced Ligo, James Webb Space Telescope, Extremely Large Telescope
- ▶ NS merger forge heavy elements through r-process (likely the dominant channel)
 - \rightarrow kilonovae are key to understand nucleosynthesis
 - \rightarrow can provide independent information on distance and Hubble constant
- Stellar parameters inform about EoS already a number of constraints exist from different observations / calculations
- ► Finite-size effects during insprial: EoS cannot be too stiff
- Prompt BH formation in NS mergers as most basic characteristic
 - M_{thres} encodes valuable information about high-density EoS
 - Multi-messeneger interpretation of GW170817: EoS cannot be too soft
- ► Postmerger GW oscillations → future EoS constraints
 - Quark matters leaves characteristic imprint on GWs

▶