

Super-FRS with Hot Cell

Helmut Weick, GSI FAIR-France Industry Meet 19th April 2023

- Super-FRS Overview
- Target Area
- Hot Cell Layout
- Tools for Maintenance

Produce Rare Isotopes

Removal of nucleons in quasi-free nucleon-nucleon collisions E ≥ 100 MeV/u

Super-FRS to produce and separate rare isotopes

²³⁸U beam 1.5 GeV/u, 3e11/s

Super-FRS Target Area

Beamline devices are mounted on shielding plugs

Magnets and Vacuum Chambers

sc dipole vacuum chambers

- sc dipole VC, FoS for 11°, 9.75° redone by Omega/TVP -> FDR
- 11 more of same design needed
 --> new tender
- sc branching dipoles VC, tender floated for 3 of Y-type

Titanium vacuum chambers

- Stress by pulsed beam on chamber wall
- Tender running, pre-gualification finished.

Radiation hard (nc) dipole magnets

- FoS built by BINP and at GSI, many changes done on after delivery.
- Tender, pre-qualification round.

Target Chamber

target plug

- + collimator
- + detectors
- + chamber
- + pumps and shielding

Manipulator Test Stand

remove cooling plate

release quick lock

remove target wheel

Beam Catchers

Try to reduce activated waste, do not exchange whole block

Beam of $3x10^{11}$ U/s for 4x90days + 1 year cooling: Ac (217 kg Cu) = 1.5e12 Bq -> at 1m H = 107 mSv/h Ac (41 kg C) = 1.6e11 Bq -> at 1m H = 0.12 mSv/h

Activation after beam times, access to maintenance tunnel is possible thanks to integrated shielding. PSI Switzerland same concept, top of chamber

Hot Cell Layout - beta-gamma cell - 7.3m x 5.75m x 5.9m - 1m normal concrete walls shielding flask plug parking cells controlled access roof sliding lid roof cover for service Storage cell Hot cell 200 I drums as short term storage capacity ~ 6 years lead glass window steel floor, 1m up wall always closed area

The Hot Cell Complex

Equipment in Hot Cells

Rotating Support Table with 3 axis extractor table

Christos Karagiannis

Maintenance of the absorbers Testbench

Lifter + BC extractor tool

Christos Karagiannis

Maintenance of the Absorbers Testbench

4 steps to exchange the absorbers

Step1 dismounting the lower C-absorber

Step2 dismounting the upper C-absorber

Step3 removal of the absorber C-frame

Step4 removal of the linear drive

Christos Karagiannis

Stepper motor exchange test

Pillow Seals

Plug dimensions

Total height: 4m Width: up to 1760 mm Depth: 120mm Weight: up to 2 t

Pillow seals in hot cell

Service:	in case of failure
Category:	very rare
Measure:	clean, replace
Steps:	open connections
	unhook pillow seal
	lift in new pillow sea
	reconnect

Too large for drum cutting in hot cell ? Saw was in original scope

Christos Karagiannis

The End

No, many things to be done