Towards experiments with polarized beams and targets at the GSI/FAIR storage rings

J. Pretz
RWTH Aachen \& FZ Jülich

Bensheim, GSI Retreat, February 2023

History

- Scientists at IKP (Institut für Kernphysik) at Forschungszentrum Jülich have large experience in experiments with polarized hadron beams and targets
- Forschungszentrum Jülich decided to stop research in this area.
- There is a TransFAIR process ongoing to integrate IKP members into GSI/FAIR.
- A common LOI
"Towards experiments with polarized beams and targets at the GSI/FAIR storage ring"
has been submitted to GPAC in July 2022

Letter of Intent: Towards experiments with polarized beams and targets at the GSI/FAIR storage rings
, IIII
A. Bondarev ${ }^{1,2}$, R. Engels ${ }^{3}$, S. Fritzsche ${ }^{1,2,4}$, R. Grisenti ${ }^{2,5}$, A. Gumberidze ${ }^{2}$, V. Hejny ${ }^{3}$, P.-M. Hillenbrand ${ }^{1,2}$, A. Kacharava ${ }^{3}$, T. Krings ${ }^{3}$, A. Lehrach ${ }^{3}$, M. Lestinsky ${ }^{2}$, Yu. A. Litvinov ${ }^{2}$, B. Lorentz ${ }^{2}$, A. Maiorova ${ }^{1,2}$, F. Maas ${ }^{6,7}$, W. Middents ${ }^{1,4}$, A. Nass ${ }^{3}$, T. Over ${ }^{1,4}$, P. Pfäfflein ${ }^{1,2,4}$, J. Pretz ${ }^{* 3}$, N. Petridis ${ }^{2}$, J. Ritman ${ }^{2,13,3}$, F. Rathmann ${ }^{3}$, S. Schippers ${ }^{8,9}$, R. Schuch ${ }^{1,10}$, M. Steck ${ }^{2}$, Th. Stöhlker ${ }^{\dagger 1,2,4}$, U. Spillmann ${ }^{2}$, A. Surzhykov ${ }^{11,12}$, G. Weber ${ }^{1,2}$, and B. Zhu ${ }^{1,4}$

Polarization Effects

Unpolarized cross section:

$$
\sigma_{t o t}=\sigma_{0}
$$

Polarization Effects

Polarized cross section:

$$
\begin{aligned}
\sigma_{t o t} & =\sigma_{o}+\sigma_{T T}\left[\left(\mathbf{P}^{\mathbf{d}} \cdot \mathbf{P}^{\mathbf{p}}\right)-\left(\mathbf{P}^{\mathbf{d}} \cdot \mathbf{k}\right)\left(\mathbf{P}^{\mathbf{p}} \cdot \mathbf{k}\right)\right] \\
& +\sigma_{L L}\left(\mathbf{P}^{\mathbf{d}} \cdot \mathbf{k}\right)\left(\mathbf{P}^{\mathbf{p}} \cdot \mathbf{k}\right)+\sigma_{T} T_{m n} k_{m} k_{n} \\
& +\sigma_{P V}^{p}\left(\mathbf{P}^{\mathbf{p}} \cdot \mathbf{k}\right)+\sigma_{P V}^{d}\left(\mathbf{P}^{\mathbf{d}} \cdot \mathbf{k}\right) \\
& +\sigma_{P V}^{T}\left(\mathbf{P}^{\mathbf{p}} \cdot \mathbf{k}\right) T_{m n} k_{m} k_{n} \\
& +\sigma_{T V P V}^{T}\left(\mathbf{k} \cdot\left(\mathbf{P}^{\mathbf{p}} \cdot \mathbf{P}^{\mathbf{d}}\right)\right) \\
& +\sigma_{T V P C}^{T} k_{m} T_{m n} \epsilon_{n l r} P_{l}^{p} k_{r}
\end{aligned}
$$

$\mathbf{P p}^{\mathbf{p}}$: proton polarization, $\mathbf{P}^{\mathbf{d}}$: deuteron vector polarization, \mathbf{T} : deuteron tensor polarization, \mathbf{k} : unit vector along collision axis

Many additional observables, some test C,P, and/or T symmetry.

Outline (Content of Proposal)

- Study spin transfer in Radiative Electron Capture (REC) with the ultimate goal is to produce beams of spin-polarized heavy nuclei
- Search for axion/axion like particles
- Search for a time reversal violating/parity conserving asymmetry

Radiative Electron Capture (REC)

Radiative Electron Capture

$$
\begin{aligned}
& \text { Radiative Electron Capture (REC): } \\
& Z^{Q_{+}}+\vec{e}^{-} \rightarrow Z^{*(Q-1)_{+}} \rightarrow Z^{(Q-1)_{+}}+\vec{\gamma}
\end{aligned}
$$

Plans:

(1) Use Anke from FZJ polarized target to provide polarized electrons
(2) measure photon polarization for U^{91+} at $400 \mathrm{MeV} / \mathrm{u}$
(3) Study spin polarization build-up, Breed U^{91+} via REC
(4) spin transfer to nuclei (e.g. ${ }^{209} \mathrm{Bi}^{82+}$) with large magnetic moment (and HFS of 4 eV)
(5) tool to generate polarized heavy nuclei

Polarized target

- about 10^{17} atoms per second, corresponding to 10^{12} atoms $/ \mathrm{cm}^{2}$
- with suitable cell 10^{14} atoms $/ \mathrm{cm}^{2}$ can be reached
- nuclear/electron polarisation of H or D reach typically 90\%

Atomic beam source used at ANKE \rightarrow experiment at COSY as polarized target

Axion/ALP searches

Axions/Axion Like Particles (ALPs)

- hypothetical elementary particle postulated by Peccei,Quinn,Wilczek,Weinberg to resolve the strong CP problem
- axion are also dark matter candidates
- axion like particles (ALP): similar properties as axions, (but ALPs don't solve the strong QCD problem)
- huge experimental effort to search for axion/ALPs (haloscopes, helioscopes, light shining through the wall, mainly coupling to photons)
- in storage rings with polarized beams axion-gluon/nucleon coupling and direct effect on spin can be studied

Spin Motion in storage ring

with respect to momentum vector in magnetic field

$$
\frac{d \vec{S}}{d t}=\left(\vec{\Omega}_{\mathrm{MDM}} \quad\right) \times \vec{S}
$$

$$
\vec{\Omega}_{\mathrm{MDM}}=-\frac{q}{m} G \vec{B}, \quad \vec{\mu}=g \frac{q \hbar}{2 m} \vec{S}=(1+G) \frac{q \hbar}{m} \vec{S}
$$

$B \quad$ magnetic field

G magnetic anomaly
$g \quad g$-factor
$\mu \quad$ magnetic moment
S spin
q, m mass, charge
d Electric Dipole Moment (EDM)

Spin Motion in storage ring

with respect to momentum vector in magnetic field

$$
\frac{d \vec{S}}{d t}=\left(\vec{\Omega}_{\mathrm{MDM}}+\vec{\Omega}_{\mathrm{EDM}}+\vec{\Omega}_{\mathrm{wind}}\right) \times \vec{S}
$$

$\vec{\Omega}_{\mathrm{MDM}}=-\frac{q}{m} G \vec{B}$
$\vec{\Omega}_{\mathrm{EDM}}=-\frac{1}{S \hbar} d c \vec{\beta} \times \vec{B}$
$\vec{\Omega}_{\text {wind }}=-\frac{1}{S \hbar} \frac{C_{N}}{2 f_{a}}\left(\hbar \partial_{0} a(t)\right) \vec{\beta}$

axion field: $a(t)=a_{0} \cos \left(\omega_{a} t+\phi_{0}\right)$
$d=d_{\mathrm{DC}}+d_{\mathrm{AC}} \cos \left(\omega_{a} t+\phi_{0}\right)$
$\hbar \omega_{a}=m_{a} c^{2}$
$d_{A C}=a_{0} g_{a d \gamma}, \quad g_{a d \gamma}:$ ALP-EDM coupling

Spin Motion in storage ring

with respect to momentum vector in magnetic field

$$
\frac{d \vec{S}}{d t}=\left(\vec{\Omega}_{\mathrm{MDM}}+\vec{\Omega}_{\mathrm{EDM}}+\vec{\Omega}_{\mathrm{wind}}\right) \times \vec{S}
$$

$$
\vec{\Omega}_{\mathrm{MDM}}=-\frac{q}{m} G \vec{B}
$$

$$
\vec{\Omega}_{\mathrm{EDM}}=-\frac{1}{S \hbar} d c \vec{\beta} \times \vec{B}
$$

Permanent EDM $d_{D C}$:

- JEDI collaboration: activities at COSY/FZJ
- EU proposal PRESTO: design of a dedicated storage ring

$$
\vec{\Omega}_{\text {wind }}=-\frac{1}{S \hbar} \frac{C_{N}}{2 f_{a}}\left(\hbar \partial_{0} a(t)\right) \vec{\beta}
$$

axion field: $a(t)=a_{0} \cos \left(\omega_{a} t+\phi_{0}\right)$ $\hbar \omega_{a}=m_{a} c^{2}$
$d_{A C}=a_{0} g_{a d \gamma}, \quad g_{a d \gamma}:$ ALP-EDM coupling

Axion Experiment at storage rings

Principle of experiment

- store polarized hadrons
- maintain precession in horizontal plane
- if $m_{a} c^{2}=\Omega_{\mathrm{MDM}} \hbar$, polarization will turn out of the horizontal plane, resulting in a vertical polarization component
- Vertical polarization can be measured using a polarimeter (in case of deuteron: deuteron carbon scattering)
- AC measurement (i.e. systematics are under control)
- axion wind effect enhanced in storage rings ($v_{\text {particle }} \approx c$)
- one can either scan a certain mass range by scanning $\Omega_{\text {MDM }}$ or measure at a fixed frequency to look for ALP at a specific mass.

Axion Analysis: d_{AC}, results from COSY

- a few days of beam time
- $f_{A C}=\frac{1}{2 \pi} \frac{m_{a} C^{2}}{\hbar}=\gamma G f_{\text {rev }}$
https://arxiv.org/abs/2208.07293 submitted to PRX

Axion Analysis: axion anomalous coupling to gluons $g_{a N \gamma}$

Axion Wind effect: coupling to nucleons C_{N} / f_{a}

How to explore a wider mass range m_{a}

$\Omega_{\mathrm{MDM}}=\gamma G \Omega_{\text {rev }}$

(1) modify beam energy (changes $\gamma, \Omega_{\text {rev }}$)
(2) use different nuclei (changes G)
(3) Use additional electric field

$$
\vec{\Omega}_{\mathrm{MDM}}=-\frac{q}{m}\left[G \vec{B}-\left(G-\frac{1}{\gamma^{2}-1}\right) \frac{\vec{\beta} \times \vec{E}}{c}\right]
$$

Axion Searches at storage rings

\star	Projections
proto type ring (single frequency)	
proto type ring 1 MHz window	
\square	proto type ring 1 KHz window
\square	proto type ring 1 mHz window (frozen spin)
CoSY proton (single frequency) \square COSY proton \square COSY deuteron (single frequency) \square COSY deuteron	

$$
\begin{array}{lllllllll}
10^{-24} & 10^{-22} & 10^{-20} & 10^{-18} & 10^{-16} & 10^{-14} & 10^{-12} & 10^{-10} & 10^{-8}
\end{array} 10^{-6}
$$

$\mathrm{m}_{2} / \mathrm{eV} \quad \mathrm{https}: / /$ doi.org/10.1140/epjc/s10052-020-7664т Q_{6}

Axion Searches at storage rings

$$
\begin{array}{lllllllll}
10^{-24} & 10^{-22} & 10^{-20} & 10^{-18} & 10^{-16} & 10^{-14} & 10^{-12} & 10^{-10} & 10^{-8}
\end{array} 10^{-6}
$$

Measurement of Parity even/Time reversal odd asymmetry

Polarized proton-deuteron scattering

Search for a time reversal violating and parity conserving asymmetry in polarized proton-deuteron scattering

Electric Dipole Moments (EDM) polarized proton-deuteron scattering axion searches

Polarized proton-deuteron scattering

 polarized proton beam, tensor polarized deuteron target
$\sigma_{\text {tot }}=\sigma_{Y, X Z}+\sigma_{\text {loss }}=\sigma_{0}\left(1+P_{Y}^{\text {bbeam }} P_{X Y}^{d \text { target }} A_{Y, X Z}\right)+\sigma_{\text {loss }}, \quad\left(A_{Y, X Z} \propto \frac{\sigma_{T V P C}^{T}}{\sigma_{0}}\right)$
Giuseppe Ciullo1, Paolo Lenisa, JPS Conf. Proc. 35, 011012 (2021),

Summary \& Outlook

- Storage ring experiments with polarized beams/targets offer a wealth of possibilities
- LOI to G-PAC submitted: "G-PAC statement: G-PAC recognises the opportunities that polarised beams would open at GSI/FAIR and encourages the collaboration to submit a proposal"
- Further investigations (beam energies, error estimates, installation of sources and targets, beam instrumentation) for experiments at ESR/Cryring still needed (PhD student, Daoning Gu, starts 01.03.2023)

