Towards experiments with polarized beams and targets at the GSI/FAIR storage rings

J. Pretz RWTH Aachen & FZ Jülich

Bensheim, GSI Retreat, February 2023

History

- Scientists at IKP (Institut für Kernphysik) at Forschungszentrum Jülich have large experience in experiments with polarized hadron beams and targets
- Forschungszentrum Jülich decided to stop research in this area.
- There is a TransFAIR process ongoing to integrate IKP members into GSI/FAIR.
- A common LOI

"Towards experiments with polarized beams and targets at the GSI/FAIR storage ring"

has been submitted to GPAC in July 2022

Letter of Intent: Towards experiments with polarized beams and targets at the GSI/FAIR storage rings

A. Bondarev^{1,2}, R. Engels³, S. Fritzsche^{1,2,4}, R. Grisenti^{2,5}, A. Gumberidze²,
V. Hejny³, P.-M. Hillenbrand^{1,2}, A. Kacharava³, T. Krings³, A. Lehrach³,
M. Lestinsky², Yu. A. Litvinov², B. Lorentz², A. Maiorova^{1,2}, F. Maas^{6,7},
W. Middents^{1,4}, A. Nass³, T. Over^{1,4}, P. Pfäfflein^{1,2,4}, J. Pretz^{*3}, N. Petridis²,
J. Ritman^{2,13,3}, F. Rathmann³, S. Schippers^{8,9}, R. Schuch^{1,10}, M. Steck²,
Th. Stöhlker^{†1,2,4}, U. Spillmann², A. Surzhykov^{11,12}, G. Weber^{1,2}, and B. Zhu^{1,4}

Polarization Effects

Unpolarized cross section:

 $\sigma_{tot} = \sigma_o$

Polarization Effects

Polarized cross section:

$$\sigma_{tot} = \sigma_o + \sigma_{TT} \left[(\mathbf{P}^{\mathbf{d}} \cdot \mathbf{P}^{\mathbf{p}}) - (\mathbf{P}^{\mathbf{d}} \cdot \mathbf{k}) (\mathbf{P}^{\mathbf{p}} \cdot \mathbf{k}) \right] + \sigma_{LL} (\mathbf{P}^{\mathbf{d}} \cdot \mathbf{k}) (\mathbf{P}^{\mathbf{p}} \cdot \mathbf{k}) + \sigma_T T_{mn} k_m k_n + \sigma_{PV}^{\rho} (\mathbf{P}^{\mathbf{p}} \cdot \mathbf{k}) + \sigma_{PV}^{d} (\mathbf{P}^{\mathbf{d}} \cdot \mathbf{k}) + \sigma_{PV}^{T} (\mathbf{P}^{\mathbf{p}} \cdot \mathbf{k}) T_{mn} k_m k_n + \sigma_{TVPV}^{T} (\mathbf{k} \cdot (\mathbf{P}^{\mathbf{p}} \cdot \mathbf{P}^{\mathbf{d}})) + \sigma_{TVPC}^{T} k_m T_{mn} \epsilon_{nlr} P_l^{\rho} k_r$$

 P^p : proton polarization, P^d : deuteron vector polarization, T: deuteron tensor polarization, **k**: unit vector along collision axis

Many additional observables, some test C,P, and/or T symmetry.

N. Nikolaev et al., Phys.Lett.B 811 (2020) 135983

Outline (Content of Proposal)

- Study spin transfer in Radiative Electron Capture (REC) with the ultimate goal is to produce beams of spin-polarized heavy nuclei
- Search for axion/axion like particles
- Search for a time reversal violating/parity conserving asymmetry

Radiative Electron Capture (REC)

Radiative Electron Capture

- Use Anke from FZJ polarized target to provide polarized electrons
- e measure photon polarization for U⁹¹⁺ at 400 MeV/u
- Study spin polarization build-up, Breed U⁹¹⁺ via REC
- spin transfer to nuclei (e.g. ²⁰⁹Bi⁸²⁺) with large magnetic moment (and HFS of 4 eV)
- tool to generate polarized heavy nuclei

Polarized target

- about 10¹⁷ atoms per second, corresponding to 10¹² atoms/cm²
- with suitable cell 10¹⁴ atoms/cm² can be reached
- nuclear/electron polarisation of H or D reach typically 90%

Atomic beam source used at ANKE \rightarrow experiment at COSY as polarized target

Max Mikirtychyants et al., Nucl. Instr. Meth. A 721, p. 83-89, (2013) DOI: 10.1016/j.nima.2013.03.043

Axion/ALP searches

Axions/Axion Like Particles (ALPs)

- hypothetical elementary particle postulated by Peccei,Quinn,Wilczek,Weinberg to resolve the strong CP problem
- axion are also dark matter candidates
- axion like particles (ALP): similar properties as axions, (but ALPs don't solve the strong QCD problem)
- huge experimental effort to search for axion/ALPs (haloscopes, helioscopes, light shining through the wall, mainly coupling to photons)
- in storage rings with polarized beams axion-gluon/nucleon coupling and direct effect on spin can be studied

Spin Motion in storage ring

with respect to momentum vector in magnetic field

$rac{dec{S}}{dt}=(ec{\Omega}_{ m MDM}$	$) imesec{m{\mathcal{S}}}$		
$ec{\Omega}_{ ext{MDM}} = -rac{q}{m} \; G ec{\mathcal{B}} \;\; ,$	$ec{\mu} = g rac{q \hbar}{2m} ec{S} =$	$(1+G)rac{q\hbar}{m}ec{S}$	
B S J	Β G g μ S q,m d	magnetic field magnetic anomaly <i>g</i> -factor magnetic moment spin mass, charge Electric Dipole Moment (EDM)	

Spin Motion in storage ring

with respect to momentum vector in magnetic field

$$\frac{d\vec{S}}{dt} = (\vec{\Omega}_{\text{MDM}} + \vec{\Omega}_{\text{EDM}} + \vec{\Omega}_{\text{wind}}) \times \vec{S}$$

$$\vec{\Omega}_{\text{MDM}} = -\frac{q}{m} G\vec{B}$$

$$\vec{\Omega}_{\text{EDM}} = -\frac{1}{S\hbar} \frac{d c \vec{\beta} \times \vec{B}}{2f_a} (\hbar \partial_0 a(t)) \vec{\beta}$$
vertical

radial

vertical

 \vec{B}
longitudinal

 $\vec{E}^* = \vec{\beta} \times \vec{B}$

axion field: $a(t) = a_0 cos(\omega_a t + \phi_0)$ $d = d_{DC} + d_{AC} cos(\omega_a t + \phi_0)$ $\hbar \omega_a = m_a c^2$ $d_{AC} = a_0 g_{ad\gamma}$, $g_{ad\gamma}$: ALP-EDM coupling

Spin Motion in storage ring

with respect to momentum vector in magnetic field

$$\frac{d\vec{S}}{dt} = (\vec{\Omega}_{\text{MDM}} + \vec{\Omega}_{\text{EDM}} + \vec{\Omega}_{\text{wind}}) \times \vec{S}$$

$$\vec{\Omega}_{\text{MDM}} = -\frac{q}{m} \vec{G} \vec{B}$$

$$\vec{\Omega}_{\text{EDM}} = -\frac{1}{S\hbar} dc \vec{\beta} \times \vec{B}$$

$$\vec{\Omega}_{\text{wind}} = -\frac{1}{S\hbar} \frac{C_N}{2f_a} (\hbar \partial_0 \mathbf{a}(t)) \vec{\beta}$$

$$\vec{\Omega}_{\text{wind}} = -\frac{1}{S\hbar} \frac{C_N}{2f_a} (\hbar \partial_0 \mathbf{a}(t)) \vec{\beta}$$

$$\vec{D}_{\text{wind}} = m_a c^2$$

$$\vec{D}_{\text{AC}} = a_0 cos(\omega_a t + \phi_0)$$

$$\vec{D}_{\text{AC}} = a_0 cos(\omega_a t + \phi_0)$$

$$\vec{D}_{\text{AC}} = a_0 cos(\omega_a t + \phi_0)$$

Axion Experiment at storage rings

Principle of experiment

- store polarized hadrons
- maintain precession in horizontal plane
- if $m_a c^2 = \Omega_{\text{MDM}} \hbar$, polarization will turn out of the horizontal plane, resulting in a vertical polarization component
- Vertical polarization can be measured using a polarimeter (in case of deuteron: deuteron carbon scattering)
- AC measurement (i.e. systematics are under control)
- axion wind effect enhanced in storage rings ($v_{\text{particle}} \approx c$)
- one can either scan a certain mass range by scanning Ω_{MDM} or measure at a fixed frequency to look for ALP at a specific mass.

Axion Analysis: d_{AC} , results from COSY

https://arxiv.org/abs/2208.07293 submitted to PRX

How to explore a wider mass range m_a

 $\Omega_{\mathrm{MDM}} = \gamma \mathbf{G} \Omega_{\mathit{rev}}$

- modify beam energy (changes γ , Ω_{rev})
- e use different nuclei (changes G)
- Use additional electric field

$$\vec{\Omega}_{\mathrm{MDM}} = -rac{q}{m} \left[G \vec{B} - \left(G - rac{1}{\gamma^2 - 1}
ight) rac{ec{eta} imes ec{E}}{c}
ight]$$

Axion Searches at storage rings

https://doi.org/10.1140/epjc/s10052-020-7664786

Axion Searches at storage rings

https://doi.org/10.1140/epic/s10052-020-766479a

Measurement of Parity even/Time reversal odd asymmetry

Polarized proton-deuteron scattering

Search for a **time reversal violating** and **parity conserving** asymmetry in polarized proton-deuteron scattering

Electric Dipole Moments (EDM)

polarized proton-deuteron scattering

axion searches

Polarized proton-deuteron scattering

polarized proton beam, tensor polarized deuteron target

$$\sigma_{tot} = \sigma_{Y,XZ} + \sigma_{loss} = \sigma_0 \left(1 + P_Y^{pbeam} P_{XY}^{dtarget} A_{Y,XZ} \right) + \sigma_{loss}, \quad \left(A_{Y,XZ} \propto \frac{\sigma_{TVPC}^T}{\sigma_0} \right)$$

Giuseppe Ciullo1, Paolo Lenisa, JPS Conf. Proc. 35, 011012 (2021), https://doi.org/10.7566/JPSCP.35.011012

Summary & Outlook

- Storage ring experiments with **polarized** beams/targets offer a wealth of possibilities
- LOI to G-PAC submitted:

"G-PAC statement: G-PAC recognises the opportunities that polarised beams would open at GSI/FAIR and encourages the collaboration to submit a proposal"

• Further investigations (beam energies, error estimates, installation of sources and targets, beam instrumentation) for experiments at ESR/Cryring still needed (PhD student, Daoning Gu, starts 01.03.2023)