

The NUSTAR Research Programme for Early Science and First Science

Wolfram Korten IRFU - CEA Paris-Saclay on behalf of the NUSTAR collaboration

GSI/FAIR Research Division Retreat

Darmstadt, Germany, February 13-14, 2023

NUSTAR sub-collaborations and members

Continue NUSTAR program at SIS18/FRS/S4 beyond Day-1 in particular using ESR and Cryring until MSV completion

W. Korten – NUSTAR JF – Jan 27, 2023

FAIR NUSTAR requirements from Phase-0 to First Science ++

Facility status			U beam intensity/spill* at production target (spill length ≥1s)		Luminosity [fb ⁻¹ /week]	
Phase-0 at GSI with FRS			12x10)9	~0.1 (x20-50)	
Early science with Super-FRS and optimised UNILAC/SIS18			5x10 ⁹		2-5 (x4)	
First Science+ with SIS100 (commissioning)			2x10 ¹⁰		10-20 (x10) >100	
First Science++ with SIS100 (full intensity)			3-4x10 ¹¹			
 Phase 0 preparation 0.1 fb⁻¹ near stability 	$ \begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array} $	Early science discovery 2-5 fb ⁻¹ more exotic	$ \begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array} $	Full MSV detailed studies >100 fb ⁻¹ very exotic nuclei		

FAR NUSTAR requirements from Phase-0 to First Science ++

- 1. High intensity for beams on (Super-)FRS target, especially for ²⁰⁸Pb and ²³⁸U:
 - **1. Optimizing transmission from UNILAC to SIS (and to FRS target) up to the highest rigidities**
 - 2. Standard operation of the pulsed Hydrogen stripper for experiments
 - 3. Higher spill rate: 1 per second at 100 ms slow extraction.
- 2. Improvement to the Micro and Macro spill structure from SIS18 in routine operation for all experiments and beams.
- 3. Optimizing transmission from FRS to ESR.
- 4. Installation of the new terminal for the ²³⁸U beam enabling 2.7Hz operation of SIS 100.

The NUSTAR Science Programme from Early Science to First Science ++

FAR NUSTAR Early Science in the highenergy cave of the Super-FRS

As soon as first Super-FRS beams are available (Q3/2027)

FAR From Early Science to First Science Plus: Search for new isotopes and their properties

Towards the r process waiting points at the N=126 shell closure

Understanding the 3rd **r-process abundance peak** by studying the ground-state and decay properties of neutron-rich isotopes towards the N=126 shell closure

Each improvement (FRS \rightarrow Super-FRS; SIS18 \rightarrow SIS100) will bring us deeper into the r-process path

W. Korten – FAIR review – June 24, 2022

FAR NUSTAR early science with additional option in front of HEC

As soon as Super-FRS is fully commissioned available (2028)

FAR DESPEC: Complete picture of decay mechanism around N=126: multifaceted approach

A~195 r-process abundance peak fed by very neutron-rich nuclei around N=126

- Half-lifes and P_n values
- Role of First Forbidden β-decay transitions
- Access to GT strength with Total Absorption Spectroscopy
- → Measurements possible down to **nb level** and below
- Early science: 0.5-1 nb accessible (N=127 isotopes)
- First Science+: <0.1 nb accessible (N=129 isotopes)</p>

 $\begin{array}{c} \widehat{\mathsf{AR}} & \mathsf{Super-FRS} \ \mathsf{EC}: \ \mathsf{Beta-delayed} \ \mathsf{single-} \ \mathsf{and} \ \mathsf{multi-neutron} \\ \mathsf{emission} \ \mathsf{probabilities} \ (\mathsf{Mass}, \ \mathsf{P}_{\mathsf{xn}}, \ \mathsf{Q}_{\beta\mathsf{xn}}, \ \mathsf{S}_{\mathsf{xn}} \ \mathsf{and} \ \mathsf{T}_{\mathsf{1/2}} \end{array} \right) \end{array}$

Early science: Take advantage of 2-stage separation of fission fragments

Step-change and unique feature:

- Two-stage separation allow for increased purity of fission fragment beams
- Super-FRS provides **10x higher transmission** of fission fragments than FRS
 - plus SIS-18 intensity increase
- Novel instrumentation (Super-FRS Ion Catcher)
 - does not require neutron detection

Strong 4n correlation observed at RIKEN in a missing-mass experiment

Counts / 2 MeV

- <u>R³B@FAIR Early Science:</u>
 High-intensity ⁸He beam at high energy;
- Quasi-elastic α knockout reaction: ${}^{8}H(p,p\alpha)^{4}n$ at large momentum transfer
- NeuLAND: largest multi-n detection efficiency: all 4 neutrons detected
- \rightarrow Direct measurement of the correlations among the neutrons possible
- \rightarrow **Identification** of the origin of the "4n correlation" observed at RIKEN

Unraveling the structure of the elusive "tetra-neutron" state

NESTAR.

First Science+: In-flight decays of medium-heavy (very exotic) drip-line nuclei
 ➤ Transmission increase (FRS → Super-FRS) is highest for light and medium heavy projectile fragments

Ion-optical flexibility: Super-FRS is used as separator (pre-separator) and analyzer (main separator)

Super-FRS EC

FAR NUSTAR First Science++ allows two separate areas in the Super-FRS building (FLF2)

Will allow **full parallel operation** of DESPEC, S-FRS EC, R3B: No loss of operation time for set-up changes if shielded by movable wall W. Korten – NUSTAR JF – Jan 27, 2023 FAIR NUSTAR First Science Plus with additional option(s) in the S-FRS low-energy branch

Will allow **full parallel operation** of **HISPEC**, S-FRS EC, R3B: No loss of operation time for set-up changes

FAR HISPEC: Picosecond lifetime measurements of exotic nuclei with AGATA

LISA: Compact array of active target detectors inside AGATA to determine interaction position

Pilot experiment: Picosecond lifetimes with the Miniball Ge detectors at RIBF

W. Korten – FAIR review – June 24, 2022

FAIR MATS& LASPEC: mass and laser spectroscopy LaSpec on refractory elements

FAIR ILIMA Early Science (still at the ESR): Rare decays (limited to nuclei near stability)

Measurement of the bound-state beta decay of bare ²⁰⁵Tl ions Lifetime of Highly-Charged lons

- Accumulation and cooling of secondary beam from FRS
- Long storage times
- Gas jet stripper
- In-ring Particle detector

Search for the nuclear two-photon decay in fully-stripped ions

Isochronous Schottky Mass Spectroscopy

- Mass resolution ~10⁻⁶
- High precision isochronous condition
- Single-ion sensitivity of new Schottky det.

New tool to search for 0^+ isomers in exotic nuclei $0^+ \rightarrow 0^+$ decays as laboratory for BSM physics

NUSTAR Perspectives up to FS++

	NUSTAR Experiment	Originally planned FAIR location	Operable at planned FAIR phase/stage	Currently operated
AIC	anti-proton lon collisions with rare isotopes	Beyond MSV	none	no
DESPEC	γ -, β -, α -, p-, n-decay spectroscopy	LEB Cave	(ES/FS)	FRS
ELISE	elastic, inelastic, and quasi-free eA scattering	Beyond MSV	none	no
EXL	light-ion scattering reactions in invere kinematics	Beyond MSV	(MSV?)*	no
HISPEC	in-beam γ spectroscopy at low and intermediate energy	LEB Cave	(FS?) FS++ *	(ext.)
ILIMA	masses and lifetimes of nuclei in ground and isomeric states	MSV	CR	ESR
LASPEC	Laser spectroscopy	LEB MATS / LASPEC Area	(FS?) FS++ *	(ext.)
MATS	<i>in-trap mass measurements and decay studies</i>	LEB MATS / LASPEC Area	(FS?) FS++ *	(ext.)
R3B	kinematically complete reactions at high beam energy	HEB Cave	ES	FRS
Super-FRS EC	RIB production, identification and spectroscopy	Super-FRS and Caves	(ES/FS)	FRS
SHE	Nuclear physics and chemistry of super- heavy elements	n.a.	n.a.	UNILAC / (CW- Linac)

Thank you very much for your attention

Romania F

Slovenia

a Sweden