

Content:

- Beamtime 2024 & 2025
- Engineering Run 2023
- SHE beamtime 2026+

The GSI superheavy element program

Recoil separators

SHIP

RESEARCH RETREAT FEB. 2023 Ancillary setups

miniCOMPACT

LUNDIUM

ANSWERS

Comprehensive investigation of **production** and of **atomic**, **chemical and nuclear properties** of elements Z ~ 100 – 118 using **novel techniques** and the **GSI-unique suite** of experimental setups around recoil separators SHIP and TASCA

Focus of SHE program: past (2022) and next (2024&25)

As reported at 2022 Beamtime Retreat

Experiments run in 2022

D.M. Cox et al. (U319) N-deficient Pu isotopes with LUNDIUM

Failed due to insufficient beam qualtiv

F. Giacoppo et al. (U324) SHE masses and isomer energies \rightarrow ran in 2021

L.G. Sarmiento et al. (G-22-00123; resubmiss.)

Approved for 2024 & 2025

Outcome of GPAC 45

FAIR ESSI

HIM

2023

N-deficient Pu isotopes with LUNDIUM

J. Khuyagbaatar et al. (G-22-00040) SHE decay spec. with ANSWERS

F. Giacoppo et al. (G-22-00154) SHE masses and isomer energies

S. Raeder et al. (G-22-00051) ₉₈Cf, ₁₀₀Fm, ₁₀₂No, ₁₀₃Lr laser spectroscopy

A. Yakushev et al. (G-22-00034) ¹⁰⁶Sg and ¹⁰⁷Bh carbonyl complexes

A. Yakushev et al. (U327) Ancillary data / setup test for 115 Mc chem. Reached 80% of the goals; problems with

one target from Mainz

 Nuclear properties Decay spectroscopy

High-precision mass measurements

Laser spectroscopy (hyperfine structure)

• Atomic properties

Laser spectroscopy of atomic levels

Chemical properties

Chemical reactions, surface interactions

FAIR GmbH | GSI GmbH

14.02.2023

3

S. Raeder et al. (U321) Laser spectroscpy of 103Lr Reached 100% of the goals

Beamtime 2024 & 2025

Approved experiments Boundary conditions

Approved beamtime (GPAC 45)

RESEARCH RETREAT FEB. 2023

5

L.G. Sarmiento *et al.* (G-22-00123; resubmission) **N-deficient Pu isotopes with LUNDIUM**

J. Khuyagbaatar *et al.* (G-22-00040) **SHE decay spec. with ANSWERS**

F. Giacoppo *et al.* (G-22-00154) **SHE masses and isomer energies**

S. Raeder *et al.* (G-22-00051) ₉₈Cf, ₁₀₀Fm, ₁₀₂No, ₁₀₃Lr laser spectroscopy

A. Yakushev *et al.* (G-22-00034) 106 Sg and 107 Bh carbonyl complexes

Approved shifts

Beams	Mai	n shifts	Par	asitic shifts	
⁴⁸ Ca	A-	15	A-	27	
⁴⁸ Ca ³⁶⁻⁴⁰ Ar/ ⁴⁸ Ca/ ⁴⁸⁻⁵⁰ Ti/ ⁵⁰⁻⁵⁴ Cr/ ⁵⁸⁻⁶⁴ Ni	A	63	A	61	
⁵⁰ Ti ⁴⁸ Ca ⁴⁰ Ar/ ⁴⁸ Ca/ ⁵⁰ Ti/ ⁵⁴ Cr	A A-	25 45	A A-	21 18	
⁴⁸ Ca ³⁶ S ⁴⁰ Ar/ ⁴⁸ Ca/ ⁵⁰ Ti/ ⁵⁴ Cr	A A-	65 / A- 30 6	Α	42	
⁵⁴ Cr ⁴⁸ Ca/ ⁵⁰ Ti/ ⁵⁴ Cr/ ⁵⁶ Fe/ ⁵⁸ Ni	A	42	A	24	
	A A-	195 96	A A-	148 45	

Summary of requested beams & boundaries

RESEARCH RETREAT FEB. 2023

Beam	Main shift	Para. shifts	Α		
³⁶ S	6		A-		
⁴⁸ Ca	128	103			
	90	27			
⁵⁰ Ti	25	21			
⁵⁴ Cr	42	18			
A~36-64		6			
		18			
Total	195	148			
	96	45			
Approved Beams					
³⁶ S	2%				
⁴⁸ Ca	75%	67%			
⁵⁰ Ti	9%	11%			
⁵⁴ Cr,	14%	9%			
Any		12%			

- High intensity ⁴⁸Ca, ⁵⁰Ti and ⁵⁴Cr beams are crucial for successful SHE program
- ⁴⁸Ca is 75% of all main shifts and a similar fraction of all parasitic shifts
 → Each ⁴⁸Ca main shift should be accompagnied by an SHE ⁴⁸Ca parasitic shift (SHIP/TASCA parallel operation)
- ⁵⁴Cr beam was not run for some time
 → need for long-term test
- Long pulses (≥5.0 ms, 50 Hz) and energy adjustment by ERs required
- Scheduling of parasitic beamtime needed for successful "main beam" experiments

Engineering Run 2023

To-do list to ensure the 2024 & 2025 beamtime goals can be reached

- Verify intensity and long-term stability of ⁵⁴Cr ion beam (long-pulse 5 ms, 4.8 MeV/u) on target @ TASCA.
- Verify shielding factor of the new shielding hut around TASCA focal with intense HI beam (e.g., ⁴⁰Ar,...; long-pulse 5 ms, 4.8 MeV/u, 1 particle-μA on target)
 @ TASCA to measure background conditions.
- Engineering run with beam will also allow verifying full functionality of the upgraded TASCA control system, including the new cabling that needed to be implemented after the removal of the "Messstation".

Several changes at SHIP during the extended shutdown are implemented

- Installation of new quadrupole magnet power supplies
- rerouting of the cables for the control of the manget PS
- new cabling of required signals from the "Messstation".

Mandatory re-commissioning of SHIP in advance of the 2024 physics beamtime request: 2 small blocks, ideally ⁵⁴Cr or ⁵⁰Ti, parasitic beam ≥ 5Hz, 5 ms

SHE beamtime 2026+

SHE Requirements

SHE beamtime 2026+

RESEARCH RETREAT FEB. 2023

UNILAC / SHE Program ...

After several years that allowed only for experiments with short beamtime requirements, a ramping up is needed for a competitive SHE program

A staged approach could include:

- 2026 3 months of SHE beamtime for SHIP & TASCA
- 2027 6 months of SHE beamtime for SHIP & TASCA
- 2028+ 9 months of SHE beamtime for SHIP & TASCA

...and future HELIAC beams

Outcome of GSI Research Retreat 2021:

[...] the timely installation of minimal config. **cw-linac (HELIAC)** delivering long-duty cycle, comprising a new (18 GHz) ECR ion source and LEBT, existing 25%-duty-cycle injector and three accelerator cryomodules [...]

HELIAC in current KHuK recommendations:

5.3 F&E-Beschleuniger

[...]Entwicklungen im Bereich Beschleunigertechnologien im Fokus des Interesses von KHuK.

• Supraleitende Dauerstrich-Teilchenbeschleuniger für Elektronen (MAMI, MESA/Univ. Mainz) bzw. Protonen (PSI/Schweiz) und Schwerionen (FRIB/U.S.A., SPIRAL/Frankreich, **HELIAC/GSI**) sind weltweit Gegenstand generischer Beschleunigerentwicklung. Diese Entwicklung von Schlüsseltechnologien sollte weiter vorangetrieben werden"

Status Jan. 2022

FAIR/GSI strategic operation scenario

- 2023 BIG "HELIAC-Strahlenschutzbunker"
- **2025** Start Aufbau/HELIAC-Bunker
- 2026 HELIAC-Bunker bezugsfertig
- 2026 Ionenquelle + HELIAC-Injektor Installation und Inbetriebnahme
- 2027 CM1 Aufbau+Inbetriebnahme + Link2UNILAC
- <u>2028</u> CM2&3 Aufbau+Inbetriebnahme + <u>Start Nutzerbetrieb</u>
- >2028 HELIAC Vollausbau + Anschluss M1-M3

15

Conclusion

RESEARCH RETREAT FEB. 2023

Beamtime 2024 & 2025

- High intensity ⁴⁸Ca, ⁵⁰Ti and ⁵⁴Cr beams are crucial
- ⁴⁸Ca shall be used with "isotope crisis" in mind
- ⁵⁰Ti, ⁵⁴Cr beams need development & verification & potentially isotope procurement

Engineering run 2023

 Highly important to verify ⁵⁴Cr intensity, TASCA shielding upgrade, new SHIP power supplies, new cabling to SHIP and TASCA,...

Outlook 2026+

- Successively ramping up of SHE beamtime
- Towards HELIAC in the "post Unilac" time

Enriched isotope crisis

• Steps underway that hopefully lead to GSI/HIM-based ⁴⁸Ca enrichment capabilities

Input to this talk from

W. Barth (GSI/HIM) M. Block (GSI) J. Khuyagbaatar (GSI) T. Kieck (HIM) B. Lommel (GSI) S. Raeder (GSI) A. Yakushev (GSI)

is gratefully acknowledged

Thank you for your attention!

The long-term view

The "Island of stability of superheavy elements" at the end of the periodic table

- extending the region of known nuclei to higher Z (new elements) and N using intense stable beams
- fixing the center, the extension and the topography of the Island of Stability
- chemical classification of heaviest known elements to elucidate the validity of the periodic table
- expect disruptive, unplanned findings in the field of superheavy elements
- linking laboratory experiments to astrophysical studies
- New opportunities with HELIAC