Reaction parameter study of the ⁵¹V beam onto deformed target: ⁵¹V+¹⁵⁹Tb reaction

Pierre Brionnet

NISHINA Center; Superheavy team

Plan

- ♦ Introduction: reaction mechanism and side collision using ⁵¹V beam
 - ♦ Goal
 - ♦ Surrogate lighter systems
- ♦ Experimental method and setup
- ♦ Results
 - ♦ Barrier distribution
 - ♦ Excitation function

Physics Case: Synthesis of new elements

- ♦ Production of new element using ⁴⁸Ca is no longer possible
 - ♦ ⁵⁰Ti, ⁵¹V and ⁵⁴Cr needed to expend beyond Og with fusion evaporation technic
- Reaction mechanism on actinide target not study with these heavier beam

♦ Current search Z = 119 at RIKEN using :

⁵¹V + ²⁴⁸Cm reaction

Z = 119 new element

Optimal energy for the SHE search: RIKEN approach

♦ Search of new element currently ongoing at RIKEN with the hot fusion evaporation of ⁵¹V on ²⁴⁸Cm using the barrier distribution measurement for the optimal beam energy selection

M. Tanaka et al., J. Phys. Soc. Jpn. 91, 084201 (2022)

 \diamond Peak energy of barrier distribution D(E) is linked to the maximum cross-section of production

T. Tanaka et al., J. Phys. Soc. Jpn. 87, 014201 (2018).

T. Tanaka et al., PRL 124, 052502 (2020).

T. Tanaka, Doctoral thesis, Kyushu University (2019).

- \diamond Cold fusion reaction : D(E) and σ_{ER} are consistent
- \diamond Hot fusion reaction : $\sigma_{ER} > D(E)$, due to the large prolate deformation
 - ♦ Side vs Tip configuration
 - \diamond B_{side} derived from the experimental B₀ and CCFULL calculation
 - ♦ Only studied for beam lighter than ⁴⁸Ca : no cross section with heavier beam known

 $E_{\rm e.m.}$ [MeV]

Surrogate reaction: test the side to tip collision effect

- ♦ Direct systematic measurement with actinide target impossible due to the very low fusion-evaporation cross section (pb to fb range)
- ♦ Systematic studies needed on deformed target : using surrogate target
 - ♦ Similar deformation parameter : study of the side collision effect
 - ♦ Surrogate reaction with deformed lanthanide targets:

¹⁵⁹Tb
$$\beta_2$$
=0.271, β_4 =0.066 vs ²⁴⁸Cm β_2 =0.286, β_4 =0.039

Cross-section of production in μb range

=> First surrogate measurement using the ⁵¹V+¹⁵⁹Tb system

Experimental Setup

- ♦ SRILAC facility
 - ♦ SC-ECRIS ion source: 28 GHz
 - ♦ SRILAC : Supra Conducting Tank

H. Sakai et al., Eur. Phys. J. A 58, 238 (2022).

♦ GARIS-III separator and focal plane detection (FDP)

Experimental Method: Barrier distribution and excitation function

- \diamond Detection of the target-like events transported in GARIS-III separator at $\theta = 0^{\circ}$ M. Tanaka et al., J. Phys. Soc. Jpn. 91, 084201 (2022)
 - ♦ Similar method as previous measurement

T. Tanaka et al., PRL 124, 052502 (2020).T. Tanaka, Doctoral thesis, Kyushu University (2019)

T. Tanaka et al., J. Phys. Soc. Jpn. 87, 014201 (2018).

- Excitation function:
 - \diamond Transport of all the evaporation residue (xn, pxn, ...) at the focal plane detection system
 - Production rate estimated from the total alpha spectrum

Analysis and Results

Barrier distribution: condition and identification

Condition:

- $^{51}V^{13+}$ beam : 196 MeV $< E_{lab} < 260$ MeV (2 MeV steps)
- ♦ Intensity: 1.54 pnA
- ♦ Target: ¹⁵⁹Tb metallic: 298±10 µg.cm⁻² onto 2.8 μm Ti backing
- Target-like selection : TOF-E telescope information
 - Separated from the identified background
 - Contamination of deep inelastic events at high beam energy (c)

Barrier distribution: Correction factor

- Transmission dependence at the focal plane
 - ♦ Typical implantation profile on the dispersive axis (X-axis):
 ~ 76.5 strip
 - ♦ Small variation will impact the transmission
 - ♦ Need correction/adjustment
- * Adjustment of the Bρ setting to keep it centered :

Yellow highlight (> 95% relative transmission)

Experimental Results: barrier distribution measurement

 \diamond Reflection probability R(E):

$$R(E) = \frac{d\sigma_{oE}}{d\sigma_{Ruth}} \equiv C. \frac{N_{oE}[^{159}\text{Tb}]}{N_{Ruth}[^{51}\text{V}]}$$

 \diamond QE barrier distribution D(E):

$$D(E(i)) = \frac{R(E(i+1)) - R(E(i-1))}{E(i+1) - E(i-1)}$$

 \diamond Average barrier height : $\underline{B_0} = 164.12 \pm 0.31 \, \underline{MeV}$

Couple Channel Calculation (CCFULL)

Couple Channel Calculation using CCFULL code

K. Hagino et al., Comput. Phys. Commun 123, 143 (1999)

Optimization of the parameter to fit the experimental

measurement:

Optical potential		
Real part		
$V_0 = 68 \text{ MeV}$	$r_0 = 1.176 \text{ fm}$	$a_0 = 0.689 \text{ fm}$
Imaginary part		
$V_w = 45 \text{ MeV}$	$r_w = 1.05 \text{ fm}$	$a_w = 0.689 \text{ fm}$
Excitation of the ⁵¹ V (Quadrupole vibrational coupling)		
$\beta_2 = 0.11$	$E_{1ph} = 0.320 \text{ MeV}$	$N_{ph} = 1$
Excitation of the	¹⁵⁹ Tb	
Quadrupole vibrational coupling		
$\beta_2 = 0.271$	$E_{1ph} = 0.058 \text{ MeV}$	$N_{ph} = 1$
Rotational coupling		
$\beta_2 = 0.271$	$\beta_4 = 0.066$	$\beta_6 = -0.007$
Coupling of neutron-transfer reaction		
$F_{tr} = 0.05$	Q = -0.821 MeV	

 \diamond Derivation of the side collision energy B_{side} (80°< θ <90°)

 $\underline{\mathbf{B}_{\text{side}}} = 171.5 \pm 0.5 \, \underline{\mathbf{MeV}}$

Excitation function: Production rates

- \Leftrightarrow Estimation of the production rate based on the total α -spectrum:
 - \diamond Anti-correlation with ToF signal (TDC and QDC information) to define the α -spectrum
 - ♦ 24h accumulation per energy point
 - No timing information applied
 - \Leftrightarrow Fit of the overall spectrum based on the know branching ratio and α -energies
 - \Leftrightarrow Skew-gaussian function used for the DSSD response : optimized on the 7.320MeV $\alpha\text{-decay}$ of the $^{207\mathrm{m}}Ra$

C. John Bland, Appl. Radiat. Isot. 49 (9-11) (1998) 1228-1229

Excitation function: Transmission correction

- ♦ Transmission dependence per exit channel : Wide variety of evaporation residue transported at the same time
 - ♦ Bp dependence need to be corrected for each considered exit channel

 - ♦ One exit channel kept centered at each energy point for reference
 - ♦ Deviation from the reference based on the know dispersion of GARIS-III (19.8 mm/%) and the implantation characteristic at each energy (width and energy)

=> Individual transmission per reaction channel

Excitation function: condition and results

Experimental condition :

- \diamond ⁵¹V¹³⁺ beam : 205 MeV < E_{lab} < 250 MeV (5 MeV steps)
- ♦ Intensity : [152-345] pnA
- Target: ¹⁵⁹Tb metallic: 363.8±16.3 μg.cm⁻² onto 2.8 μm Ti backing
- ♦ Nominal transmission: 75 ± 15 % D. Kaji et al., Proc. Radiochim. Acta 1 (2011) 105
- α detection efficiency : 55 % (DSSD only)

♦ Maximum cross-sections:

- \Rightarrow p3n : 33.1 ± 8.9 µb at E* = 55.5 ± 1.1 MeV
- $\Leftrightarrow \alpha 3n : 27.1 \pm 7.3 \ \mu b \ at E^* = 55.5 \pm 1.1 \ MeV$
- \Rightarrow 3n : $4.38 \pm 0.95 \,\mu b$ at E* = 40.3 $\pm 1.1 \,\text{MeV}$

Preliminary Results/interpretation

Preliminary discussion/interpretation: barrier distribution

- Deformation needed to fit the measurement of the barrier distribution
- \diamond Maximum of the *xn* exit channel consistent to B_0 and not B_{side}
 - ♦ No side effect observed?
- ♦ In discussion with Hagino-san for CCFULL interpretation

Preliminary discussion/interpretation: Cross-section of production

♦ Systematic decrease from Ca and Ti reaction on same target

D.A. Mayorov et al., PHYSICAL REVIEW C **90**, 024602 (2014) D.A. Mayorov et al., PHYSICAL REVIEW C **92**, 054601 (2015)

- Ratio pxn to xn inverted compared to SHE mass region: higher fission barrier seems to enhance charged particle emission
- \diamond The ratio pxn to xn not always inverted in this mass region
 - ♦ ⁵⁰Ti + ¹⁵⁹Tb not inverted
 - ♦ ⁴⁰Ar + ¹⁷⁴Yb not inverted
 - \diamond ⁴⁴Ca + ¹⁵⁹Tb/¹⁶²Dy equal
 - ♦ ⁴⁰Ar + ¹⁷¹Yb inverted

♦ In discussion with M. Kowal and T. Caps (Warsaw, Poland) for the cross-section discussion and theoretical estimation

Recap

- Barrier distribution measurement performed
 - ♦ Deformation strongly impact the fit to the data
 - \diamond Maximum of the *xn* consistent with B₀ and not B_{side}
 - ♦ Interpretation and discussion ongoing

- \diamond Detail excitation function for xn, pxn and αxn produced with high statistics
 - $\Leftrightarrow pxn$ and αxn higher than xn in production rate
 - ♦ Not unusual in this mass region because of the higher fission barrier
 - ♦ Theoretical input and discussion on going

Publication in preparation

Collaborator

* RIKEN Nishina Center: K. Morimoto, D. Kaji, S. Kimura, H. Haba, H. Sakai

♦ Wako Nuclear Science Center (WNSC), IPNS, KEK : T. Niwase

♦ Department of Physics, Kyushu University: T. Fukatsu, Y. Michimoto, S. Sakaguchi, Y. Yamanouchi

♦ DNE team, IPHC : M. Forge

♦ For the nSHE collaboration