

## Investigation of the role of multi-neutron transfer channels on sub-barrier fusion enhancement

<u>Rinku Prajapat</u><sup>1</sup>, Moumita Maiti<sup>1</sup>, Rishabh Kumar<sup>1</sup>, Malvika Sagwal<sup>1</sup>, Gonika<sup>2</sup>, Chandra Kumar<sup>2</sup>, Rohan Biswas<sup>2</sup>, J. Gehlot<sup>2</sup>, S. Nath<sup>2</sup>, and N. Madhavan<sup>2</sup>

<sup>1</sup>Department of Physics, Indian Institute of Technology Roorkee, Roorkee-247667 Uttarakhand, India <sup>2</sup>Nuclear Physics Group, Inter-University Accelerator Centre, New Delhi-110067, India

The heavy-ion fusion reactions are greatly influenced by various degrees of freedom of colliding partners, e.g., inelastic excitations, deformation, and positive Q-value neutron transfer (PQNT) channels, below the Coulomb barrier [1,2]. However, the role of PQNT channels in sub-barrier fusion enhancements is somewhat dramatic and not yet fully understood. Thus, an experiment has been performed to measure the fusion excitation functions for <sup>28,30</sup>Si+<sup>158,156</sup>Gd reactions, which forms the same compound nucleus <sup>186</sup>Pt\* at energies well below to above the Coulomb barrier using the Heavy-Ion Reaction Analyzer (HIRA) at Inter University Accelerator Center (IUAC), New-Delhi, India. The measured fusion cross sections and derived fusion barrier distribution have been analyzed within the coupled channel (CC) calculations for both reactions were enhanced compared to the one-dimensional barrier penetration (1D-BPM) model. Thus, the systematic effect of PQNT channels and inelastic excitations in colliding partners have been investigated to decipher the role of neutron transfer channels on sub-barrier fusion. Detailed analysis and the obtained results will be discussed during the talk.

## References

- [1] M. Dasgupta et al., Ann. Rev. Nucl. Part. Sci. 48, 401 (1998)
- [2] R. Prajapat, M. Maiti et al., Phys. Rev. C 105, 064612 (2022)
- [3] K. Hagino et al., Comput. Phys. Commun. 123, 143 (1999)
- [4] V. I. Zagrebaev, Phys. Rev. C 64, 034606 (2001); 67, 061601(R) (2003)