20<sup>th</sup> Workshop on Recoil Separator for Superheavy Element Chemistry & Physics (TASCA 23)

# **Preparation of the Nihonium Chemistry at IMP**

### Zhi QIN

#### Nuclear Chemistry Group, Institute of Modern Physics, Chinese Academy of Sciences

#### April 27, 2023

-

### Background



### History of Nh adsorption studies (I): Dubna & GSI, 2014~2017







#### 1 Dubna (<u>Mendeleev Commun. 24, 2014</u>)

- <sup>48</sup>Ca+<sup>243</sup>Am, U-400+RTC, 13.5 days
- 5 events
- Confirmed the synthesis of E115 and E113 by <sup>48</sup>Ca+<sup>243</sup>Am reaction
- No physical pre-separation; Formation of NhOH could not be excluded
- -∆H > 60 kJ/mol

#### 2 Dubna (*Eur. Phys. J. A. 53, 2017*)

- 48Ca+243Am, U-400 + DGFRS + RTC, 4.5m capillary
- 0 events
- too long transfer PTFE capillary (4.5m) for Nh; the retention of elemental Nh on a Teflon surface is larger than expected
- -∆H > 45 kJ/mol
- ③ GSI (*Frontiers in Chemistry, 9, 2016*)
  - <sup>48</sup>Ca+<sup>243</sup>Am, TASCA + RTC, 20 days, 6cm capillary
- 0 events
- -∆H > 50 kJ/mol

### Background



History of Nh adsorption studies (II): RTC-miniCOMPACT, GSI, 2020~2021



**RTC-miniCOMPACT @ GSI** 



Yakushev, A. et al; First Study on Nihonium (Nh, Element 113) Chemistry at TASCA. Front. Chem. 2021, 9, 753738.

## Motivation: Preparation for Nh adsorption experiments

- Development of the on-Line Experiment in Gas-phasE for Nihonium Detector array (LEGEND) system
- 2. Evaluation of the transport efficiency for RTC+LEGEND system
- 3. Preparations for online experiment on short-lived TI and Fr



Theoretical predictions of  $-\Delta H_{ads}(kJ/mol)$  on a hydroxylated quartz surface

(V. Pershina, M. Iliaš, and A. Yakushev, Inorg.Chem.)

### Preparations for Nh adsorption chemistry

### Nh compared with Tl and Fr:

- Physical and atomic properties
- Valence shell electron configuration
- Chemical reactivity

#### Why we choose Fr?

- High chemical reactivity
- Low transport efficiency
- Non-volatile; lower limit for Nh
- Suitable for on-line experiment:
  - ü Produced by <sup>40</sup>Ar+<sup>169</sup>Tm reaction
  - $\ddot{u}$  Short-lived, T<sub>1/2</sub> around 1 s
  - ü a-a correlation

#### Atomic properties of Tl, Fr and Nh

Valence  $-\Delta H_{ads}(kJ/mol)$ R<sub>vdw</sub>(Å) AR(Å) m.p.(K) b.p.(K) IP(eV) EA(eV) α(au) Electron Configuration Quartz Teflon Au 1.96 1.90 6.11 ΤL 577 1746 0.38 51 153~172 20 ~250 6p1 311.5 Fr 300 950 3.09 n/a 4.07 0.49 7s<sup>1</sup> unknown 21; 72(?) 136 700 1430 1.84 1.22 7.31 0.68 29.9 14 120~180 Nh 7p<sup>1</sup> ~60

#### опытъ системы элементовъ.

#### 7-180 Nb- 94 Ta-182 W - 186. 56 8h-104.4 Pt=197.4 Bn-104,1 Ir-198. PI-105. 0-=199. NI - Co = 59 Cu-63,4 Ag-108 Hg-200. Be = 9,4 Mg = 24 Zn = 65,8 Cd = 112 Al=27,1 ?=68 Ur=116 Au=197? 50=118 5b=122 BI=210? As - 75 Se=79.4 Te=128? 5-32 Cl = 35,68r = 80 1-127 K=39 Rb=854 Cs=133 T1=204. C==40 Sr=87. Ba=137 Pb=207. ?-45 Ce-92 ?Er=56 L1=94 ?Y1-60 Di-95 21n-15,5 Th-1187

A. Menanthest



#### Experimental setup



VME digitizer system









 $\alpha$  spectra for calibration by  $^{227}\text{Ac}$ 





#### $\alpha$ - $\alpha$ correlations of <sup>221</sup>Fr $\rightarrow$ <sup>217</sup>At



Distribution of <sup>221</sup>Fr on Aluminum surface



<sup>221</sup>Fr efficiency on Aluminum: distribution



| Species                    | -ΔH <sub>ads</sub> (kJ/mol)<br>on SiO <sub>2</sub> | ΔH <sub>subl</sub> (kJ/mol) |
|----------------------------|----------------------------------------------------|-----------------------------|
| <sup>221</sup> Fr (4.9min) | unknown                                            | unknown                     |
| <sup>217</sup> At (32ms)   | 130                                                | 170                         |
| <sup>213</sup> Bi (46min)  | 150                                                | 210                         |
| <sup>213</sup> Po (4.2us)  | 100                                                | 150                         |

Serov, A., et al. Radiochimica Acta 99, no. 9 (2011): 593-600.



#### For Fr isotopes:

- Exponentially decreasing deposition: high reactive, strong interaction and non-volatile for <sup>221</sup>Fr species
- Higher gas flow rate: leads to large migration and wider distribution
- <sup>217</sup>At represent the chemical behavior of <sup>221</sup>Fr

#### For Bi isotopes:

- <sup>213</sup>Bi/<sup>213</sup>Po mainly adsorbed on T0+B0 and T1+B1
- <sup>213</sup>Po represents the chemical behavior of <sup>213</sup>Bi
- Al detector array directly connected to RTC is
  available for non-volatile Fr and Bi
  10 / 23

<sup>221</sup>Fr efficiency at different gas flow rate





Estimated  $\Delta H_{ads}$  for In, TI, Nh, Fr on Teflon, PE, graphite and SiC

The dispersion interaction energy derived from a model of an atom-slab interaction:



V. Pershina et al., J. Phys. Chem. A 2008, 112, 13712

- Order of  $-\Delta H_{ads}$  value: In  $\approx$  Fr > Tl > Nh р
- p -∆ $H_{ads}$  values on materials: SiC > Graphite > PE ≈ Teflon

### Preparations for Nh chemistry



<u>China Accelerator Facility for Superheavy Elements (CAFE2)</u> (started in May 2019 – commissioned in Feb. 2022)



Radio frequency quadrupole (RFQ)

Super-conducting linear accelerator (CW - linac)

### Preparations for Nh chemistry

New gas-filled separator: SHANS2





#### Gas-filled recoil separator (SHANS2):

| Location             | IMP<br>Lanzhou<br>China                         |
|----------------------|-------------------------------------------------|
| Configuration        | Q <sub>v</sub> DQ <sub>h</sub> Q <sub>v</sub> D |
| Deflection angle     | (30+10) °                                       |
| Max. Β×ρ (Tm)        | 2.56                                            |
| Length (m)           | 5.97                                            |
| Dispersion (mm/%B×p) | 20.9                                            |
| Solid angle (msr)    | 25                                              |

L. N. Sheng, et al., NIM A1004, 165348 (2021).





#### The design of RTC



#### The standard deviations in the horizontal ( $\sigma_x$ ) and vertical ( $\sigma_y$ ) directions are 50.7 mm and 15.0 mm respectively.



Nuclear Inst. and Methods in Physics Research, A 1050 (2023) 168113



The structure of IMP RTC

>RTC 1  $(2\sigma \times 2\sigma = 95.4\% \times 95.4\% = 91.0\%)$ X = 101.4 mm Y = 30 mm D = 20 mm V = 60.84 mL Time = 1.8 s Flow rate = 2 L/min (Ar)

ightarrowRTC 2 (1.5 $\sigma$  × 1.5 $\sigma$  = 86.6% × 86.6% = 75.0%)

X = 76 mm Y = 22.5 mm D = 20 mm V = 34.2 mL

Time = 1.0 s Flow rate = 2 L/min (Ar)

### Preparations for Nh chemistry



PAUL SCHERRER INSTITUT



COMSOL simulations by Patrick Steinegger, PSI

Flushing-out behavior of RTC



13 mm from window



1 mm from window



- Good flushing-out behavior
- Gas flow through all six inlets should be the same!  $\rightarrow$  Individual mass flow controllers will be used

### Preparations for Nh chemistry



Adapter with vacuum window  $(15 \times 5 \text{ mm}^2)$ 

Honeycomb mesh: 2 mm + 0.1 mm thick SUS



88.7% (>2.5 µm)

74.1% (<2.5 µm)



#### Si detectors for LEGEND



**RTC+LEGEND** box

A CONTRACTOR

Design of the on-Line Experiment in Gas-phasE for Nihonium Detector array (LEGEND) system



Legend with temperature gradient



#### Monte Carlo simulation $\left[-\Delta H_{ads}(Nh)=58kJ/mol\right]$



### Preparations for Nh chemistry



### The structure of LEGEND with temperature gradient









The structure of LEGEND with temperature gradient





### Gas Cleaning System



# International collaboration is warmly welcomed



*The legend of Dunhuang*, Mogao Grottoes Cave 390, Gansu Province, China. Jin dynasty (366–535 A.D.)

Gansu Dance Troupe's The Legend of Dunhuang

The city of Dunhuang in north-western Gansu province of China was a major stop on the ancient Silk Road. An oasis city, it was an important hub for trade and cultural exchange, a meeting point between the civilizations of Asia, India, Europe and the Islamic world. It is perhaps most famous for the Mogao Caves, a complex system of Buddhist temples outside the city, a wondrous cache of art and literature. The so-called Library Cave – walled off in the 11th century and rediscovered in the 20th – was found to contain everything from folks songs and government records to Buddhist, Confucian, Taoist and even Nestorian Christian texts, with manuscripts in languages from Chinese to Hebrew. Most famous of all, however, are the beautiful and elaborate murals that cover the walls of the Mogao caves, dating across a period of over a thousand years. 7<sup>th</sup> International Conference on the Chemistry and Physics of the Transactinide Elements (TAN23)

November 12~17, 2023, Huizhou, China

CHEMS

TAN 23

#### Institute of Modern Physics, CAS



7<sup>th</sup> International Conference on the Chemistry and Physics of the Transactinide Elements (TAN23) November 12~17, 2023, Huizhou, China

![](_page_23_Picture_1.jpeg)

CHEMS

**TAN 23** 

![](_page_23_Picture_2.jpeg)

![](_page_23_Picture_3.jpeg)

![](_page_23_Picture_4.jpeg)

![](_page_23_Picture_5.jpeg)

![](_page_23_Picture_6.jpeg)

7<sup>TH</sup> INTERNTIONAL CONFERENCE ON THE CHEMISTRY AND PHYSICS OF THE TRANSACTINIDE ELEMENTS

> Huizhou, China November 12~17, 2023

> > II Parts

### Scope

- u Theories and experiments of heaviest-element synthesis
- u Nuclear reaction studies
- u Nuclear structure and spectroscopy
- u Atomic physics studies
- u Chemical properties of transactinide elements
- u Technical developments
- u Large-scale facilities in the field of superheavy element research

1.0

![](_page_24_Picture_10.jpeg)

#### International Advisory Committee:

Sergey Dmitriev (Russia) Ephraim Eliav (Israel) Mikhail Itkis (Russia) Yuichiro Nagame (Japan) Witold Nazarewicz (USA) Yuri Oganessian (Russia) Valeria Pershina (Germany) Peter Schwerdtfeger (New Zealand) Mark Stoyer (USA) Hiromitsu Haba (Japan) Robert Eichler (Switzerland) Jacklyn M. Gates (USA) Katsuhisa Nishio (Japan) Michael Block (Germany) Christoph E. Düllmann (Germany) Heinz W. Gäggeler (Switzerland) Hushan Xu (China) Zhiyu Sun (China)

# Conference Website: <a href="https://indico.impcas.ac.cn/e/tan23">https://indico.impcas.ac.cn/e/tan23</a>

### Online registration & abstract submission has already been topened

![](_page_25_Picture_2.jpeg)

![](_page_25_Picture_3.jpeg)

#### Important Dates

| 2nd Circular                     | March 2023           |
|----------------------------------|----------------------|
| Registration                     | April 2023           |
| Deadline for abstract submission | August 30, 2023      |
| 3rd Circular/Final program       | August 2023          |
| Deadline for registration        | September 30, 2023   |
| Conference                       | November 12-17, 2023 |
|                                  |                      |

#### Some invited speakers

Ephraim Eliav (Tel-Aviv University, Israel) Mikhail Itkis (FLNR Dubna, Russia) Yuri Oganessian (FLNR Dubna, Russia) Katsuhisa Nishio (JAEA Tokai, Japan) Valeria Pershina (GSI, Germany) Witold Nazarewicz (FRIB, Michigan State Univ., USA) Patrick Steinegger (PSI, Switzerland) Robert Eichler (PSI, Switzerland) Sergey Dmitriev (FLNR Dubna, Russia) Anastasia Borschevsky (Univ. Groningen, Netherlands) Zhong-zhou Ren (Tongji University) Shan-qui Zhou (ITP CAS, China) Jun Li (Tsinghua University) Meng Wang (IMP CAS, China) Zhi-Yuan Zhang (IMP CAS, China)

To be added...

# Welcome to TAN23

![](_page_26_Picture_1.jpeg)

![](_page_26_Picture_2.jpeg)

中国科学院近代物理研究所 Institute of Modern Physics, Chinese Academy of sciences

ADVANCED ENERGY SCIENCE AND TECHNOLOGY GUANGOONG LABORATORY

### HIAF + CiADS

![](_page_26_Picture_5.jpeg)

![](_page_26_Picture_6.jpeg)

![](_page_26_Picture_7.jpeg)

![](_page_27_Picture_1.jpeg)

![](_page_27_Picture_2.jpeg)

# Online registration is open now!

Conference website: <a href="https://indico.impcas.ac.cn/e/tan23">https://indico.impcas.ac.cn/e/tan23</a>

![](_page_27_Picture_5.jpeg)