

In-beam fission study at ASRC, JAEA

K. Hirose¹, K. Nishio¹, H. Makii¹, R. Orlandi¹, K. Tsukada¹, M. Asai¹, T.K. Sato¹, Y. Ito¹,
F. Suzaki¹, S. Matsunaga², S. Sakaguchi², M. Egeta³, N. Iwasa³, S. Tanaka^{1,4}, Y. Aritomo⁵,
Y.X. Watanabe⁶, Y. Hirayama⁶, H. Miyatake⁶, A.N. Andreyev⁷, I. Tsekhanovich⁸, S. Yan⁹,
C.J. Lin⁹, S. Kubono⁴, T. Tanaka⁴, K. Morimoto⁴, K. Rykaczewski¹⁰, R.A. Boll¹⁰

¹Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
 ²Kyushu University, Fukuoka 816-8580, Japan
 ³Tohoku University, Sendai, 980-8578, Japan
 ⁴RIKEN, Wako, Saitama 351-0198, Japan
 ⁵Kindai University, Higashi-Osaka 588-8502, Japan
 ⁶High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
 ⁷University of York, YO10 5DD, United Kingdom
 ⁸University of Bordeaux, 33170 Gradignan, France
 ⁹China Institute of Atomic Energy, Beijing 102413, China
 ¹⁰Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

From the measurements of fission-fragment mass distributions for nuclides around A=258 for spontaneous fission, a unique sharp change from asymmetric fission to symmetric fission mode was found by moving from ²⁵⁶Fm to ²⁵⁸Fm [1]. To understand such specific phenomenon will give a unique opportunity to study the fission mechanism. At the Tokai tandem accelerator facility of Japan Atomic Energy Agency, we have performed the ⁴He+²⁵⁴Es experiment producing ²⁵⁸Md whose fission has not been observed ever. The mass-TKE correlation at 15, 16, 18 and 20-MeV excitation energies were obtained. Decomposition were performed by standard (asymmetric) mode, short and superlong (symmetric) modes and their excitation energy dependence will be discussed.

Another topic is the angular momentum transfer in the multi-nucleon transfer (MNT) reaction. MNT are expected one of viable reactions to produce super-heavy nuclei with more neutrons [2]. The angular momentum is an important property of a compound nucleus which has an effect on its survival probability. In MNT reactions, the axis of the angular-momentum transfer can be identified to be perpendicular to the reaction plane. Thus, the fission-fragment angular distribution measured with respect to this axis is strongly reflected by the angular momentum. We performed the fission-fragment angular distribution measurements in the ¹⁸O+²³⁷Np reaction, and the results for produced compound nuclei of ²³⁶⁻²⁴⁰Np, ²³⁷⁻²⁴²Pu, ²³⁸⁻²⁴⁵Am, ²⁴³⁻²⁴⁵Cm will be presented.

References

- [1] D.C. Hoffman et al., Radiochimica Acta 70/71, 135 (1995).
- [2] V.I. Zagrebaev and W. Greiner, Phys. Rev. C87, 034608 (2013).