

Si microstrip and pixel detectors for EXPERT experiments at FRS/Super-FRS

Martin Bajzek

Darmstadt, Germany, 16/12/2022

Super-FRS EC Meeting | 15-16 December 2022 | Darmstadt, Germany

FragmentatiOn Of Target (FOOT) detectors

- Tracking of light charged particles (~MIP)
- Single-sided
- Replacement of old AMS detectors
- Reconstruction of outgoing angles with a (few) mrad resolution
- Vertex reconstruction with a <1 mm accuracy
- Additionally:
 - Tagging charge of final state products (Z \leq 20)
 - Resolving multiple particle tracks

Sensor + ASICs + Front-end

0

0

Single-sided sensors (HAMAMATSU), 150 µm thick

AC-coupling, linear response

10 charge-sensitive ASICs IDE1140 (IDEAS)

640 ch per detector (10 cm)

2x 40 pin connectors

15 detectors available at GSI

Differential signals from FE to ADC boards

Front-end architecture:

Signal processing schematic

- Rising time of a charged particle hit signal 5-8 µs
- Shape&Hold programmable indicator when the output of shaper gets sampled
 - Default 6.5 µs

ADC + FPGA

- Custom ADC with two 40-pin connector input
- CAEN HV module steered by Arduino Uno Via I²C
- DE10-Nano
 - Intel SoC FPGA
 - Processor, peripherals, high-speed
 DDR3 memory, ethernet capability
- Polls data from ADC, latches WR timestamp
- Sends event packets to a DAQ PC
- ~60 µs busy window, adjustable

Readout

- drasi nodes running on DE10-Nano's, data transported to DAQ machine via 10 Gbps ethernet
- event-stitching & recording done on PC side
 - Synchronisation via WR and sync-trigger
- 1 subevent: ~800 bytes/detector, no pedestal removal
- LMD data output, data structure on https://wiki.r3b-nustar.de/detectors/foot/

Raw (mapped) data

R³B runs in May/June 2022 (II)

- Use in s509, s522 experiments in R³B configuration in Cave-C, May/June, 2022
- Primary beam 18 O @1.3 AGeV, secondary 16 C, thick (50 mm) LH₂ target
- 12 detectors, 6 pairs measuring X,Y

R³B runs in May/June 2022 (II)

Super-FRS EC Meeting | 15-16 December 2022 | Darmstadt, Germany

Analysis procedure

- 1. Global baseline subtraction (strip-by-strip)
- 2. Fine correction event-by-event
- Interstrip hit correction (η -correction) & clustering

R³B Analysis results (s522, preliminary)

In-beam detectors can separate some charged states

FOOT1 vs FOOT0 correlation (ADC units)

Charge Z identified by correlating with ToFD (tof-wall)

R³B Analysis results (s522, preliminary)

• Multihits generate large charge on the ASIC - baseline drop (known from AMS)

Vertex reconstruction

Area enclosed in green is the nominal boundary of LH2 target. Scale is **mm**. Courtesy of Andrea Lagni & Antoine Barrière

On-going issues with FOOT

- Problem of 150 µs induced deadtime due to pedestal fluctuation
 - Baseline offset if pair of triggers too close in time (< 100 µs)
- Multihits in one ASIC

Blue: Input trigger Yellow: FE output

Courtesy of Dr. K. Koch & Dr. N. Kurz

FOOT Summary

- Stable operation at R³B (p,2p) experiments with < 1 year of R&D
- In-beam FOOTs not ideal beam rate limitation
- Reasonable performance of arm detectors
- Bad signals at the edge channels of each ASIC

To do:

- FE operation not ideal
 - Research about trigger-rate limitations
 - Infrared laser to inject charge into Si-strips as a way to study multihits
- Determine efficiency for MIPs

Monolithic Active Pixel Sensor (ALPIDE)

Detector Readout Timestamp FPGA Source Readout Software

Super-FRS EC Meeting | 15-16 December 2022 | Darmstadt, Germany

ALPIDE Sensor

- 15 mm (Y) × 30 mm (X) sensor of a 512 x 1024 pixels
 - CMOS chip, made for ALICE Inner Tracking System (ITS 2)
 - 29.24 x 26.88 (X × Y) μm². Thickness 50 μm
- Front-end built-in electronics: amplifying & shaping circuit, discriminator
 - Multi-event buffer (3x hit registers), pixel masking
 - Peaking time of 2 µs
- Common threshold for all pixels
- Pixel hit latched to storage register if STROBE pulse applied while FE output above threshold
 - Internal & external triggering
- Injection of test charge to input of FE
- 1.2 Gb/s Serial Data port with differential signaling

ALPIDE DAQ Setup (CERN, 2022)

Test at COSY (March 2022)

Detector Readout Timestamp FPGA Source Readout Software

- 1 ALPIDE detector, d⁺, p⁺ beams @1 GeV/u, 800 MeV/u
- Readout software framework provided by ALICE
 - Not understood, hard to refactor
- No masking of noisy pixels huge overhead
- Internal trigger only
- No proper analysis macros

Test at COSY (March 2022) II

R&D at GSI (summer 2022)

- Drasi DAQ solution
 - Integrated with libraries from CERN test-DAQ
 - FPGA firmware update to handle white-rabbit timestamp input & sync trigger
 - Synchronisation of multiple readout nodes
- Able to run distinct of common drasi instance between FPGA's
- ucesb unpacker
- Implementation of externally triggered mode
 - Up to now only internal (software) triggered mode working
- Laser tests mapping check, passed
- β-source test didn't work for new sensors received in August
 - Problem of unknown optimal threshold parameters
 - Figured out later at CERN
- Recording files with multiple detectors synchronisation check with WR, passed
- Threshold scan software implementation, ongoing

Complex pixel mask feasible

AMBER beamtime at CERN (Fall 2022)

- 6 ALPIDE detectors in a telescope
- SPS Accelerator -> muon beam at 160 GeV + parasitic p⁺ beam
- External trigger test with double-pulses (5 µs separation), passed
- BUSY output only signals that buffers are full, useless
- Trigger rate >20 kHz leads to data corruption
 - Wrong order of headers and hit-data in event format
 - Temp. solution: limit deadtime to 50 μs. Unknown cause
- Experiment goals:

ALPIDE1ROWv:ALPIDE1COLv (ALPIDE1ROWv<2000 && ALPIDE1COL

ALPIDE3COLV:ALPIDE1COL

- Test synchronisation, works
- Measure position resolution, on-going

Super-FRS EC Meeting | 15-16 December 2022 | Darmstadt, Germany

Analysis (preliminary)

- Ongoing writing of object-oriented offline analysis framework (started Dec. 2022)
- 3 step procedure:

1000

800

600

450

400 E

350

250

200 E

150

- Conversion of raw data to clustered data, works
- 2. Calibration of (ΔX , ΔY) for each detector with respect to a referent ALPIDE, works
 - a. Slope coefficients should be 1 for perfectly aligned telescope
 - b. Calculation based on correlation plot
- 3. Track reconstruction, on-going

Column Calibration: 3

Row Calibration: 3

Black data; Red fit. Skewing at small rows is due to not enough statistics at those points (and they were disregarded from the fit)

ALPIDE Summary

- Stable operation in November, 2022, tested @CERN and @COSY (Jülich)
- Data looks reasonable, analysis in process
- DAQ Integration successful

To do (hardware):

- Build and test bigger ALPIDE stations which house multiple chips (O. Kiselev)
- Cooling frames
- Multiplexing solution for >1 chip per FPGA

To do (software):

- Finalize LMD data format
- Matrix threshold scan
- Build offline and online analysis frameworks

On-campus testing:

- Optimization of (>10) programmable chip parameters
- DAQ benchmark
- Laser tests

FAIR ES ST

- Control system engineer 👷
- 🔹 Offline analysis 🦸
- github/gitlab PR reviewer 🕵
- Online analysis 🦸

We're 'hiring' :)

- DAQ Wizard 🧙
- FPGA expert 🥷
- Documentation buddy 🤵
- Master of cables 🦹

Thank you for your attention!