

Simulation and Reconstruction of the PANDA Barrel DIRC

Maria Patsyuk

PANDA Barrel DIRC

- PANDA DIRC is a PID detector
- Cherenkov light coming from the charged particle is trapped in the radiators and guided to the photo detector plane. Depending on the particle velocity the hit patterns are different:

- PANDA PID requirement: π/K separation in the range of [0.5; 3.5] Gev/c
- Design goal: 3 mrad Cherenkov angle resolution, which means ~8-9 mrad single photon Cherenkov angle resolution and > 20 photons per track detected
- Baseline design is based on the BABAR-DIRC, but many parameters should be optimized

Some design options

Radiator bars (5 bars per bar box)

Radiator plate

Some design options

- Prism compresses
 the phase space in
 radial direction and
 reduces the number
 of required pixels
 - Forward mirror focuses forwardgoing photons
- Separated
 expansion volumes
 (one for each bar
 box) reduce weight,
 simplify detector
 design. They can be
 used with prisms

Reconstruction approach

Photo detector plane is covered with PMT-MCPs, hit pixels are used as the detector raw data. Time information is planned to be used as well.

Procedure:

- 1. Before reconstruct track patterns create look-up tables where initial photon direction for each pixel is saved (taking into account 4 possible photon paths to the photo detector)
- 2. Get charged particle direction from tracking system (or from MC data)
- 3. For each pixel of the hit pattern combine information about the photon and the charged particle direction to reconstruct the Cherenkov angle and plot it (subtracting the expected Cherenkov angle)

Performance of the simplest DIRC design

No focusing, fused silica bars are directly attached to the expansion volume (EV)

Simple estimation of Single photon Cherenkov angle resolution - 18-19 mrad

map of θ_c^{photon} for one bar box, 3 GeV muons

Performance of the simplest DIRC design

A map of number of detected photons per charged track

A map of Cherenkov angle resolution per track assuming ideal tracking and perfect bar shape

$$\sigma_{\theta_{\scriptscriptstyle C}^{\scriptscriptstyle track}}\!=\!\sigma_{\theta_{\scriptscriptstyle C}^{\scriptscriptstyle photon}}/\sqrt{N_{\scriptscriptstyle photons}}$$

Summary of Sim&Reco status

- 1. The final DIRC design has not been decided yet
- 2. The reconstruction procedure is dependent on the particular design features and is under development
- 3. Time information is not yet properly taken into account

- → no Digitization stage in the reconstruction yet: positions of hit pixels are taken as raw data
- → no time-based event mixing
- → DIRC is not yet available in the full PandaRoot reconstruction (but there are fast table-based algorithms of DIRC reconstruction)