

HEDP Infrastructure at the APPA cave

Workshop on High Energy Density Physics Opportunities at FAIR Madrid, November 18, 2022

Stephan Neff Facility for Antiproton and Ion Research

FAIR will offer much higher beam intensities than are available at GSI **Phase 0:** Experiments using existing GSI accelerators in preparation for FAIR, e.g. for detector commissioning Proton-LINAC **PHELIX**: High energy laser for coupled SIS-100 or standalone experiments PHELIX **Z6**: UNILAC beam and PHELIX long-pulse **HHT**: High energy protons and ions from **Z6** SIS-18 SIS-18 and PHELIX long-pulse -aser HHT UNILAC First experiments using the new FAIR Day-1: accelerators, with reduced beam parameters at the beginning **APPA cave**: High energy beams from SIS-100, FLAX diagnostic laser **APPA** cave FAIR full performance (APPA cave) U28+ Protons 10 GeV 2.7 GeV/u 5·10¹¹ 2.5·10¹³

	GSI (HHT)		FAIR Day-1 (APPA cave)	
	Protons	U ⁷³⁺	Protons	U ²⁸⁺
Max. Energy	4.7 GeV	400 MeV/u	4.7 GeV	2.7 GeV/u
Particles/Bunch	7 ⋅ 10 ¹⁰	4·10 ⁹	1 ⋅ 10 ¹¹	1 ⋅ 10 ¹¹

The APPA cave will house the experimental setup for HED@FAIR

Plasma physics

11

Bio

FAIR South Area Construction Site, October 2022

optional connection to short-pulse laser

The civil construction of the APPA cave is progressing as planned.

Control roo

Klystrons & Cryogenics

FLAX: First Laser for APPA eXperiments

- FLAX under construction by PHELIX laser team (GSI)
- Supported by German university projects (BMBF VBF): Laser frontend (U Jena) Prototype main amplifier (TU Darmstadt)
- Option to later on install a short-pulse laser (Helmholtz Beamlines) if funding becomes available.

Flash lamp module prototype, TU Darmstadt

532 nm

Laser frontend, U Jena

high-intensity short-pulse laser

Three main experimental schemes will be used: HIHEX, PRIOR & LAPLAS

HIHEX Heavy Ion Heating and Expansion

Create mm-sized samples of warm dense matter

PRIOR **Proton Microscopy**

• 511111 PRIOR-II / GSI Helmholtzzentrum für Schwerionenforschung GmbH

Use protons for precise density measurements

LAPLAS Laboratory Planetary Science

Compress mm-sized samples to Mbar pressures

The modular design of the HED@FAIR beamline accommodates all experimental setups

Maximum shot rate for heavy ions (full intensity)

Every 3 minutes for thin targets / every 15 minutes for massive targets

Limited by radiation safety constraints and target debris

Beam line setups used for HIHEX and LAPLAS

HIHEX setup

focused beam on target

Beam parameters on target for HIHEX and LAPLAS

Beam ion (reference)

Energy

lons / bunch

Focal spot size

Duration

Beam power

Beam energy

LAPLAS target

beam spot is rotated to create annular profile

U28+

0.4 - 2.7 GeV/u

up to 5 · 10¹¹

1 mm

50 ns

160 GW - 1 TW

8 - 50 kJ

The Proton Microscopy at FAIR (PRIOR) setup will be used to image dense samples generated with secondary drivers

D.Varentsov et al., Review of Scientific Instruments 87/2, 023303 (2016)

transmission (intensity) provides information about the object density

It is also possible to use the superconducting magnets for 1:1 imaging

Chromatics RMS resolution $Cr_x \times Cr_y$ (µm)

Off-axis RMS resolution $Or_x \times Or_y (\mu m)$

PRIOR-II @ FAIR

SC Identity Lens

	5000	5000	
	2.5 × 10 ¹³	2.5 × 10 ¹³	
	8.03	1.00	
2.0	5.0	5.0	
30 × 52	29 × 48	82 × 82	
1.8 × 3.4	4.5 × 8.5	23.6 × 23.6	
2.0 × 3.9	5.1 × 9.7	63.0 × 63.0	

A wide variety of external drivers can be used for the proton radiography of shocks and other phenomena

Explosively driven shocks

Viscosity measurements with falling spheres in high-pressure liquids

2-mm-diameter ball falling inside a thick Ti high-pressure vessel filled with liquid sulfur

B. Winkler, GU Frankfurt

Laser driven shocks

Shocks driven with a light gas gun

M. Endres, TU Darmstadt

Proton imaging and therapy

11

The target chamber for HIHEX and LAPLAS experiments has been commissioned and the target supply system is under development at the TU Darmstadt

Target chamber installed at HHT

Lift manipulator Two grippers

12

A set of optical and x-ray diagnostics will be used in the experiments and are tested in experiments at GSI

Conclusions

A selection of planned physics experiments

Project phas

Physics examples

Multiple-shock compression of Earth crust minerals¹

Ionization Potential Depression (IPD)²

Critical point in lead³

Phase transitions in carbon⁴

Iron in Earth and Super Earths⁵

Warm dense water⁶

H/He demixing⁷

1 - <u>Letter of Intent for PRIOR (2021) – collection of proposed experiments</u>

2 - White paper for Day-1 experiments (2014); D. Kraus et al., Phys Rev. E 94, 011202 (2016)

- 3 <u>V. Mintsev et al., Contrib. Plasma Phys. 56, 281 (2016)</u>
- 4 <u>GSI experiment S489;</u> D. Kraus et al., Nature Astronomy 1, 606 (2017)

5 - N. Tahir et al., The Astrophysical Journal Supplement Series 232,1 (2017)

6 - N. Tahir et al., Phys. Plasmas 28, 032712 (2021); doi: 10.1063/5.0037943

7 - W. Lorenzen et al. PRB 84, 235109 (2011)

ses	HED platform	GSI SIS-18 / HHT	First experiments @FAIR	Ful perform
	PRIOR			
	HIHEX			
	HIHEX			
	LAPLAS			

Color codes

Backup slides

15

The civil construction of the buildings for the first experiments is nearly finished

FAIR Construction Site, October 2020

FAIR Construction Site, October 2022

HED@FAIR - plans for first FAIR experiments in 2025

- Commissioning of superconducting final focusing system can be done at 10⁹ ions/bunch

Two flagship ion beam heating experiments are in preparation for day-1

1) Equation-of-state of metals near the critical point

- liquid-gas phase transition and coexistence regime is of fundamental interest and high technical relevance
- Regime at 10kK-kbar experimentally challenging
- Advanced theoretical models differ by up to 100% \rightarrow measurements will strongly constrain models

Experiments near critical point or in strongly-coupled regime will need >10¹⁰ ions/bunch

HED@FAIR - plans for first FAIR experiments

2) Ionization potential depression in dense plasmas

- Screening in plasmas causes lowering of the continuum, affecting charge state, transport properties, EOS
- Widely used models fail in strongly-coupled regime
- Current benchmarking experiments often with strong gradients, small sample sizes

 \rightarrow with FAIR-beams we can produce large, well-defined homogenous samples of strongly-coupled plasmas

In addition, PRIOR-II will offer proton microscopy with highenergy, high-intensity proton beams for multidisciplinary research

Experimental setup to measure ionization potential depression in dense plasmas generated with FAIR

photon energy [eV]

