Update on Feature-Extraction Tests

Celina M. Frenkel frenkel@hiskp.uni-bonn.de October 12, 2022

HISKP - University Bonn

Measured Waveforms at -25 °C

- APD: "RINGING" after pulse
 - \rightarrow const. fraction of pulse-height for high-gain channel
 - \rightarrow origin of "ringing" visible in **preamplifier** pulse
 - \rightarrow considered to be not fixable
 - \Rightarrow issue for feature-extraction

Measured Waveforms at –25 °C

- APD: "RINGING" after pulse
 - \rightarrow const. fraction of pulse-height for high-gain channel
 - \rightarrow origin of "ringing" visible in **preamplifier** pulse
 - \rightarrow considered to be not fixable
 - \Rightarrow issue for feature-extraction
- VPTT-submodule
 → no ringing
- try to fix "ringing" with signal deconvolution

Blind-Deconvolution

Basic Idea:

$$f = g * h \xrightarrow{\mathfrak{F}} \hat{f} = \hat{g} \cdot \hat{h}$$

$$\downarrow :\hat{f} : \hat{h}$$

$$H = \mathfrak{F}^{-1} \begin{bmatrix} \hat{g} \\ \hat{f} \end{bmatrix} \xleftarrow{\mathfrak{F}^{-1}} \frac{1}{\hat{h}} = \frac{\hat{g}}{\hat{f}}$$

[Jan Schultes]

Deconvolution:

deconvolution of each measured waveform using H

$$g_{\text{event}} = f_{\text{event}} * H$$

$$\mathsf{BD}[n] = (f_{\mathsf{event}} * H)[n] = \sum_{k} f_{\mathsf{event}}[k] \cdot H[n - k]$$

mean waveform of raw SADC-pulse

gaussian fct. \rightarrow chosen $\rightarrow \sigma$ limited by max. frequency $\rightarrow A$ to conserve peak-height

deconvolution fct. H \rightarrow determine **once**!

Celina Frenkel – HISKP Bonn

Deconvolution Example

Simulation example:

- 800 MeV @ sample 100
- 3 MeV @ sample 200

\rightarrow simulate 1k waveforms and apply deconvolution

⇒ blind deconvolution: no ringing + pile-up well visible ⇒ MWD + MA: ringing covers pile-up pulse

Celina Frenkel – HISKP Bonn

Peakfinder

peaktime

number of peaks

peaks

peakfinder \Rightarrow require # rising samples

- choose thr. as low as possible such that max. pulse is found but **no artifacts**
- choose thr. as high as possible such that 3 MeV is still safely found but noise is suppressed
- \rightarrow optimal case: both criteria fulfilled
 - ⇒ blind deconvolution: **check!** ⇒ not fulfilled for MWD + MA due to ringing

Celina Frenkel – HISKP Bonn

Use peakfinder:

- · get int./max. ratio from extracted features
- · derive upper int./max. ratio from simulation via

 \rightarrow compare measured ratio with boundary

Pile-up simulation:

- **pulse A fixed** at $t_A = 0$ samples with 1000 ADC channels
- pulse B with variable position and height
- ⇒ get number of found peaks flagged as pile-up

Celina Frenkel – HISKP Bonn

DPM-Simulation

Assume: $L = 2 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$

- 1 1.5 GeV c_0^{-1} : $\sigma \approx 100 \text{ mb}$ \rightarrow event rate $\approx 20 \text{ MHz} (\Delta t = 50 \text{ ns})$
- 2 15 GeV c_0^{-1} : $\sigma \approx 50 \text{ mb}$ \rightarrow event rate $\approx 10 \text{ MHz} (\Delta t = 100 \text{ ns})$

PRELIMINARY RESULTS (assume APD waveform also in inner region):

⇒ single crystal hit rate up to 600 kHz ⇒ pile-up rate up to 60 kHz

pile-up influenced by adjusting width of integral window \rightarrow (minor) influence on energy resolution

Celina Frenkel – HISKP Bonn

Summary and Outlook

Summary:

- blind deconvolution can eliminate ringing
- peakfinder works reliable down to 3 MeV
- **DPM-simulation:** single crystal particle rate up to 600 kHz and pile-up rate of 60 kHz

Outlook:

- further investigate ringing
 - \rightarrow APD low-gain channel
- blind deconvolution implementable?
 - \rightarrow test new feature extraction algorithm with beam
 - \rightarrow improve algorithm iteratively

Celina Frenkel – HISKP Bonn