HELMHOLTZ Helmholtz-Institut Mainz

JOHANNES GUTENBERG UNIVERSITÄT MAINZ JG

Reconstruction of $\Lambda\overline{\Lambda}$ pairs in $\overline{p} + A$ reactions

Falk Schupp¹, Patrick Achenbach^{1,2}, Sebastian Bleser¹, Michael Bölting¹, Josef Pochodzalla^{1,2}, Marcell Steinen¹

¹ Helmholtz-Institute Mainz
² Johannes-Gutenberg University Mainz

Introduction

- Studied reaction $\overline{p} + A \rightarrow \Lambda \overline{\Lambda}$
- Close to production threshold:
 - Beam momentum 1.646 GeV/c
- $\Lambda\overline{\Lambda}$ momentum distributions modified by:
 - Fermi motion of nucleons
 - Nuclear (anti-)hyperon potential
- Define momentum asymmetry α :

$$\alpha = \frac{p_{\Lambda} - p_{\overline{\Lambda}}}{p_{\Lambda} + p_{\overline{\Lambda}}}$$

• If $m_{\overline{\Lambda}} \approx m_{\Lambda} \approx m$ and $U_{\overline{\Lambda}} \approx U_{\Lambda} \approx U$:

(Nucl. Phys. A 954, 323 (2016))

z-Institut Mainz

GiBUU simulations

- Reaction simulated by GiBUU
 - Antihyperon potential modified by scaling factor $\xi_{\overline{\Lambda}}$
 - Several month of computation on Himster2 cluster
- Up to 10⁹ events simulated for each potential

Momentum [GeV/c]	$\xi_{\overline{\Lambda}/\overline{\Xi}}$	# simulated events	# $\Lambda\overline{\Lambda}$ pairs	Effective PANDA time
1.64	0.0, 0.5, 0.75	$1.63\cdot 10^8$	$\approx 70k$	11.2h
1.64	0.25, 1.0	$1.08\cdot 10^9$	$\approx 500k$	74.6h
1.52	0.0, 0.25, 0.5, 0.75, 1.0	$1.35 \cdot 10^{8}$	$\approx 35k$	9.3h

• "Effective PANDA time" = time required to achieve same statistics in PANDA

GiBUU results

Same number of events used for each potential •

PandaRoot study

- Currently studying the reconstruction of GiBUU events in PANDA
 - Using PandaRoot v12.03 / FairSoft apr21p2 / FairRoot v18.6.7

- Ideal pattern recognition
- Ideal PID

Pair reconstruction

- Low momenta Λ and $\overline{\Lambda}$ difficult to reconstruct
- Pairs are missing where the Λ or $\overline{\Lambda}$ has low momentum
- Losing approximately 20% of pairs due to low momentum hyperon

Reconstruction efficiency

- Acceptance of final state particles
 - Monte-Carlo truth matching PDG code
 - Daughter of primary hyperon

	Acceptance
p	67,7%
π^{-}	69,1%
$ar{p}$	82,5%
π^+	75,8%

	Efficiency	Purity
Λ	36,4%	89,2%
$\overline{\Lambda}$	46,5%	96,2%

- Hyperon reconstruction:
 - Combining proton and pion candidates
 - Simple mass cut

- Use best candidate after vertex fit
- Candidate must also pass mass fits

Momentum resolution

- Reconstructed momentum resolution
- No four-momentum constraint possible

$$\left[\frac{\Delta p}{p}\right]_{\Lambda} = \left[\frac{\Delta p}{p}\right]_{\overline{\Lambda}} = 4.4\%$$

(compared to J. Pütz: $\sim 1.6\%$ but $\bar{p}A$ vs $\bar{p}p$)

л,MC

- Reconstruction efficiency strongly depends on asymmetry
- Poor reconstruction efficiency for high or low longitudinal asymmetries
 - Asymmetries (+1,+1) and (-1,-1)

$$\Rightarrow p_{\Lambda} = 0$$
 or $p_{\overline{\Lambda}} = 0$

- Different behavior of GiBUU data (green) and reconstructed pairs (blue) observed
- Can be understood by simple momentum cut on the GiBUU data (p>0.25 GeV/c) (red)

- In the region of $\alpha_L = [-0.2; 0.4]$
 - Best reconstruction efficiency
 - Different potentials can be distinguished
- High sensitivity remains

Summary and Outlook

- Major effort was made to simulate sufficient statistics with GiBUU
- Event reconstruction in PANDA looks promising
 - Asymmetry remains sensitive to antihyperon potential
 - Understood asymmetry profile distortion due to efficiencies
- Recently started with background study
 - Using GiBUU background events
 - 10 million events simulated so far waiting for analysis
- Since the asymmetry is strongly affected by efficiencies, maybe better observables are available

11.10.2022

• Work in progress

HELMHOLTZ Helmholtz-Institut Mainz

JOHANNES GUTENBERG UNIVERSITÄT MAINZ JG

Thank you for your attention

This project has received funding by the European Union's Horizon 2020 research and innovation program under grant agreement No 824093.