



# Progress of the Hyperatom setup

Marcell Steinen, Patrick Achenbach, Michael Bölting, Jürgen Gerl, Philipp Hermann, Ivan Kojouharov, Josef Pochodzalla, Héctor Sanchis Perez, Falk Schupp Helmholtz-Institut Mainz

Panda Meeting 22-3

#### Outline



#### www.hi-mainz.de

Helmholtz-Institut Mainz

## Hyperatom/hypernuclei setup



- Dedicated target system
- PANGEA





#### Outline

- Target system
  - Mechanical design
  - 3D printed Vacuum chamber
  - Z Motor positioning
- PANGEA
  - Holding structure
  - Detector manufacturing



# Target system – Design



#### 3D printed model:

- Handling
- Cabling





#### Target system - 3D printed chamber

- Small chamber with comlex design
- Hard to mill/weld -> AI 3D print
- Vacuum capabilities? Mechanical stability?



#### Target system - 3D printed chamber (2)



- γ absorbed in chamber material must be reduced
- Deformation measured after evacuation
- Measurements better than FEM simulations
- Deformations for 2 mm walls too high

#### Target system - 3D printed chamber (3)



- Honeycomb structure to improve stability
- Minor vacuum issues with this model
  - -> Post processing of 3D printed model by heat/pressure treatment for next version

### Target system - simulations



Detailed model in PandaRoot



### Target system - simulations (2)





- $\Xi^{-}$  stopping:
  - Sligthly below previous designs (0.49 % vs. 0.57)
  - Mainly caused by slit in target (required!!)



# Target system - simulations (2)

• γ efficiency:

- Compared some variations of the target chamber



|                    | $\gamma$ eff @ 559 keV |
|--------------------|------------------------|
| No chamber         | 5.49 %                 |
| 2 mm, no honeycomb | 4.84 %                 |
| 2 mm               | 4.76 %                 |



#### Target system – position system

- Crucial to hit the slit in the absorber when changing target
  Z positioning (beam axis): better than 100 µm
- Radiation hard position system based on IR reflection







#### Target system – position system (2)



- Target moving full range
  - FWHM: (18.71 +- 0.38) μm
  - Max deviation: 30µm
- Paper in preparation (Falk)

#### Target system – position system (3)

- Algorithm required to steer the system to a specific position
- Precision? Repeatabity?



Summer student: Héctor Sanchis Perez



#### Target system – position system (4)

25 20 「時es reachgd 5 0 730 731 732 735 736 737 738 739 740 733 734 Position in Encoder Units (1 unit = 5 micrometers)

Histogram Positions Minimum 1

Avg interval: 48 μm

Avg std. dev.:

• Max. interval: 75 μm

- Outliers:
  - Improvement of the readout electronics in progress

8 µm

#### Summer student: Héctor Sanchis Perez



#### PANGEA



16

#### Picture still with old coolers



#### **PANGEA - Orientation**



Absorbed γ in the target system
 Orientation of PANGEA?

with more complex frame

|      |      |      | -         |
|------|------|------|-----------|
|      | 56   |      |           |
|      |      |      |           |
|      |      |      | -         |
|      | (<>) |      |           |
|      |      |      |           |
|      |      |      | -         |
|      |      |      |           |
|      |      |      |           |
|      |      |      | $\square$ |
|      |      |      | -         |
|      |      |      |           |
|      |      |      |           |
| <br> |      |      | -         |
|      |      |      |           |
|      |      |      |           |
|      |      |      |           |
| <br> |      | <br> | -         |
|      |      |      |           |
|      |      |      |           |
|      |      |      | -         |
|      |      |      |           |
|      | 156  |      |           |
|      |      |      |           |
|      |      |      | -         |
|      | (x)  |      |           |
|      |      |      |           |
|      |      |      | -         |
|      |      |      | -         |
|      |      |      |           |

No improvement!
 No need for 90° rotation

|                        | $\gamma$ eff @ 559 keV |
|------------------------|------------------------|
| Horizontal PANGEA (56) | 4.76 %                 |
| Vertical PANGEA (156)  | 4,75 %                 |



### PANGEA – Holding structure



- 4 submodules
- Splitting in half for installation and maintenance
- First submodule fully designed, produced and tested

### PANGEA – manufacturing

- Components fully available:
   25 detectors (PANGEA: 20)
- fully assembled (prel. Electronics):
  - 8 detectors
- Partly assembled
  - 8 detectors
  - Staged assembly, small noise issues must be fixed
- Further assembly in progress
- More components ordered



Components delivered by TIFR-Mumbai.



8 detectors used in DESPEC S450 at FSR(GSI) (May 22)



### Summary

- Target system (hyperatom):
  - Redesign in progress (components now available)
  - Successful tests of stability and vacuum capability of 3D printed vacuum chamber
  - Precision of the position system better than required and very stable repeatability
- PANGEA •
  - Orientation of columns is irrelevant for the performance
  - First submodule of the holding frame successfully tested
  - Manufacturing of PANGEA is ongoing
  - 8 detectors successfully used in DESPEC experiment



Institut Mainz