Hyperon Feasibility Studies for PANDA and PANDA@HADES

Malin Bohman

PhD Student

Supervisors: Karin Schönning, Michael Papenbrock

Uppsala University

Outline

- Introduction and scopes
- Analysis methodologies
- Relevant results

$\Lambda(1405)$ at PANDA

Short feasibility study, fall 2021

$p_{beam} = 2.4 \; Ge \, V/c$

Introduction

Relevant for neutron star EoS

- $\Lambda(1405)$, a bound KN-state?
- \rightarrow determine feasibility for future studies

Scope

Background:

- Secondary reactions with detector material
- Misidentification background

Event selections:

- Exclusive for $p\bar{p} \rightarrow pK\bar{\Lambda}$
- Inclusive for $p\bar{p} \rightarrow \Lambda(1405)\bar{\Lambda}$

$p\overline{p} \rightarrow \Lambda(1405)\overline{\Lambda}$

- Reconstructed FS: p, \bar{p}, π^-, π^+
- Invariant mass cut on $\bar{p}\pi^+$ to select $\bar{\Lambda}$ cands.
- Missing mass cut on π^0

$p\overline{p} ightarrow pK\overline{\Lambda}$

- Reconstructed FS: p, K^-, \bar{p}, π^+
- Invariant mass cut on $\bar{p}\pi^+$ to select $\overline{\Lambda}$ cands.

Reconstruction Efficiency

- Exclusive reconstruction: Number of times the whole reaction was reconstructed
- Inclusive reconstruction: Number of times that:
 - All of the charged final state particles were detected The missing mass survived the π^0 mass cut

 - Reconstructed Λ survived the invariant mass cut

34.9%

 $p\bar{p} \rightarrow pK^-\bar{\Lambda}$ exclusive reconstruction efficiency

 $p\bar{p} \rightarrow \Lambda(1405)\bar{\Lambda}$ inclusive reconstruction efficiency

$\Lambda\Lambda$ at HADES

Master thesis project, spring 2022

Introduction

- Kinematic fitter benchmarked with promising results for single hyperon reconstruction
- How well will it perform for hyperon pairs?
- \rightarrow Perform a simulation study on $pp \rightarrow \Lambda \Lambda K^+ K^+$ to determine the $\Lambda \Lambda$ reconstruction efficiency using the kinematic fitter for femtoscopy applications

Scope

Background:

- Secondary reactions with detector material
- Misidentification background
- Combinatorial background
- Three event selections:
 - $p\pi^-p\pi^- + X$
 - $p\pi^-p\pi^-K^+ + X$
 - $p\pi^{-}p\pi^{-}K^{+}K^{+}$

The KinFit Library

Vertex Finder

- Two charged particle tracks utilized to find a vertex
- Used to identify the primary and the decay vertex

Kinematic Fit

- Utilizes the Lagrange Multiplier Method to optimize the reconstructed $p\pi^-$ momentum under:
 - Geometric constraints, the primary and decay vertexes
 - Kinematic constraints, the conservation of momentum and energy

- Lower estimate of expected events from beam time
 - $\sigma = 0.35 \ \mu b_{\frac{1}{2}}$ 1.8 · 10⁶ $pp \rightarrow \Lambda\Lambda K^+ K^+$ events • $L = 5.4 \ pb^{-1_2}$

- PID from main detector
- Proton hypothesis for all forward detector candidates

¹HADES and PANDA@HADES collaborations, Production and electromagnetic decay of hyperons: a feasibility study with HADES as a phase-0 experiment at FAIR, The European Physics Journal, 2021 ² Based on Jana Rieger's estimates from pp elastic scattering 160

140

120

100

80

60

40

20

2500

 K^+

500

-500

1000

1500

2000

 $p \cdot Q (MeV/c)$

- $2.25 \cdot 10^6$ $\Lambda \rightarrow p\pi^-$ events
- Expected efficiency for first inclusive channel ³
- *K*⁺ most often emitted outside of main detector acceptance
- Limits the reconstruction efficiency

Selection	Condition	Events	$\eta~(\%)$
$pp \to X$	none	$1 \ 800 \ 000$	100
$pp \rightarrow p\pi^- p\pi^- + X$	at least $2p$ and $2\pi^-$	9 727	0.54
$pp \rightarrow p\pi^- p\pi^- K^+ + X$	at least $2p$, $2\pi^-$ and $1K^+$	2580	0.14
$pp \to p\pi^-p\pi^-K^+K^+$	at least $2p$, $2\pi^-$ and $2K^+$	349	0.02

Estimate the primary vertex

- Primary vertex approximated as point-of-closest approach between the Λ candidate and the beam-axis
- If there is one K^+ , this track is included
- If there are two $2K^+$, use the KinFit vertex finder

Perform fitting

Results		Number of r	econstructions			
1.8 $\cdot 10^6 pp \rightarrow \Lambda\Lambda K^+ K^+$		close to exp from beam t	ected ¹ lower limit time (1302)	Very few K^+ emitted into main detector acceptance		
2.25 · 10° /	$\Lambda \rightarrow p\pi^-$					
Λ	Gen. Signal (prim)	Gen. $(prim + sec)$	Reconstructed	True	Purity (%)	$\eta~(\%_{ m oo})$
$pp \rightarrow p\pi^- p\pi^- + X$	$19\ 454$	19 769	1 404	$1 \ 094$	77.9	0.78
$pp \rightarrow p\pi^- p\pi^- K^+ + X$	$5\ 160$	5246	68	59	86.8	0.04
$pp \rightarrow p\pi^- p\pi^- K^+ K^+$	698	709	54	47	87.0	0.03
		S	ignificantly affected $p\pi^-$ combinatoria background	l by al		

¹HADES and PANDA@HADES collaborations, Production and electromagnetic decay of hyperons: a feasibility study with HADES as a phase-0 experiment at FAIR, The European Physics Journal, 2021

Results

counts

Overall, around 80 %

 $|p_{\Lambda 1} - p_{\Lambda 2}|$ (MeV/c)

Distribution of $\Lambda\Lambda$ relative momentum. Relevant region for Femtoscopy studies is < 200 MeV/c

 $|p_{\Lambda 1} - p_{\Lambda 2}|$ (MeV/c)

Higher concentration of false Λ reconstructions at small decay vertex distance

Results

Distribution of the Λ – pair decay vertex distance d

- Objective: determine the reconstruction efficiency for $\Lambda\Lambda$ using the KinFit library for femtoscopy applications
- First look into fitter performance on more complicated reaction topologies
- Reconstruction efficiency limited by K^+ emitted outside of the main detector acceptance
- Reconstruction purity improved when at least one K^+ was used in vertex estimate
- Identified the low relative momentum region as challenging due to combinatoric background

Analysis of this channel is being continued by Gandharva Appagere, Stockholm University

Thank you!

Find my thesis at: <u>https://uu.diva-portal.org/smash/record.jsf?pid=diva2:1678990</u>

Analysis: Where are the protons?

	Recons	tructed p	orotons		
$pp \to X$	Reco	nstructed	True	Purity (%)	$\eta~(\%)$
Main	13	36 752	82 161	60.0	6.07
FwDet	11	13 848	$593\ 428$	48.4	49.4
$pp \rightarrow p\pi^- p\pi^- + X$					
Main		2 861	$1 \ 477$	51.6	0.13
FwDet	1	8036	$11 \ 465$	63.5	0.80
$pp \rightarrow p\pi^- p\pi^- K^+$ -	$\vdash X$				
Main		638	238	37.3	0.02
FwDet	4	4 790	3524	73.6	0.21
$pp \rightarrow p\pi^- p\pi^- K^+ K$	(+				
Main		89	35	39.3	3.6e-3
FwDet		638	506	79.3	0.03

True = p from Λ decay, η = reconstruction efficiansy

- Much higher reconstruction efficiensy in FwDet
- Stricter event selection increases FwDet purity
- Less secondary background

p generated signal

A generated signal

