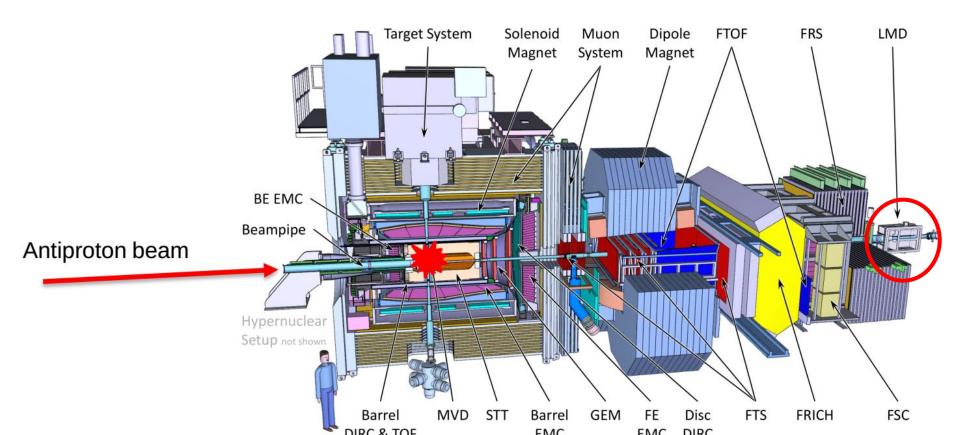
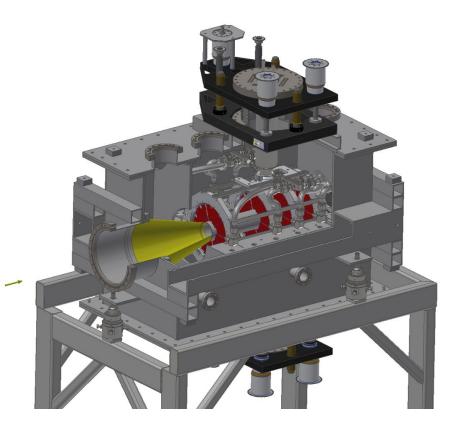
Measurement with a Coordinate Measuring Machine

Christof Motzko on behalf of the Luminosity Detector Group

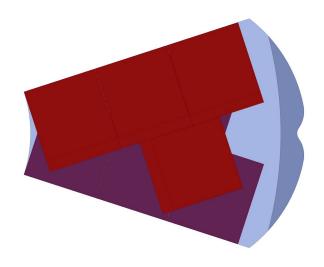

Helmholtz-Institut Mainz Johannes Gutenberg-Universität Mainz

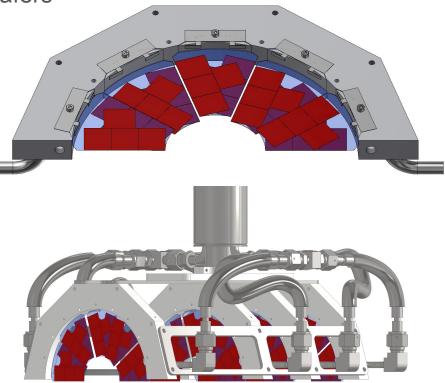
> PANDA Collaboration Meeting October 11, 2022



The Luminosity Detector at PANDA

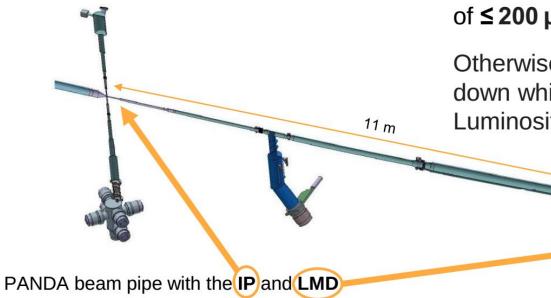
Luminosity Detector


4 planes in line10 modules on each plane8 sensors on each module320 pixel sensor in total



Arrangement of the Sensors

320 sensors glued on 40 CVD diamond wafers


- 4 planes with 10 modules
- Full azimuthal range

Motivation

Tracking requires precise alignment

Position of the HV-MAPS relative to the IP must be known with a precision of $\leq 200 \,\mu m$

Otherwise, software alignment breaks down which is necessary for the Luminosity Determination

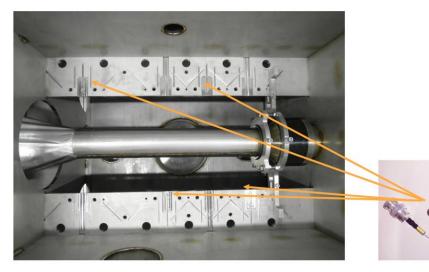
Sources of Uncertainty I

Exemplary LASER tracker (30 µm accuracy)

Measurement Step	Туре	Estimated Precision
LMD Position in PANDA Hall	LASER Tracker	30 µm

Exemplary SMR* (mirror inside)

[MetrologyWorks GmbH]



SMR Nests attached to the box will hold the SMRs by means of a magnet

Sources of Uncertainty II

Capacitive proximity sensors will measure the position of the Half Detectors relative to their own position

Necessary because of the LSM

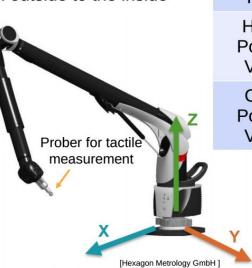
Measurement Step	Туре	Estimated Precision
LMD Position in PANDA Hall	LASER Tracker	30 µm
Half Detector Position inside Vacuum Box	Capacitive Sensors	1 µm

One of our capacitive proximity sensor (<1 µm accuracy)

Sources of Uncertainty III

Measurement Arm measures position of the capacitive sensors and the positions of the SMRs

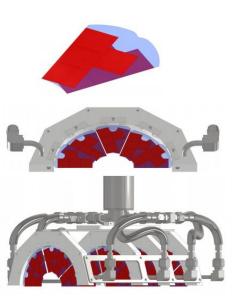
Establishes a connection from outside to the inside of the box



SMR (Optical center measured by Laser tracker)

[MetrologyWorks GmbH]

Reference Ball (Interface between Laser tracker and Arm)



Measurement Step	Туре	Estimated Precision
LMD Position in PANDA Hall	LASER Tracker	30 µm
Half Detector Position inside Vacuum Box	Capacitive Sensors	1 µm
Cap. Sensor Position inside Vacuum Box	Measurement Arm	50 µm

Sources of Uncertainty IV

A stationary **CMM*** will measure the **Modules**, the **Half Planes** and the **Half Detectors**

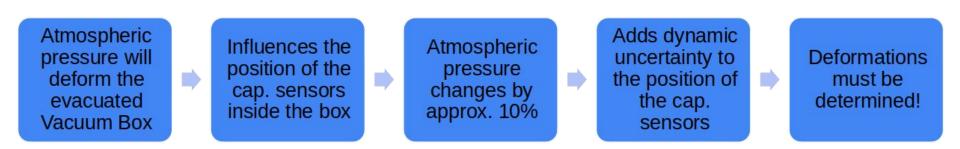
Measurement Step	Туре	Estimated Precision	
LMD Position in PANDA Hall	LASER Tracker	30 µm	
Half Detector Position inside Vacuum Box	Capacitive Sensors	1 µm	
Cap. Sensor Position inside Vacuum Box	Measurement Arm	50 µm	
Pixel Sensor Position inside Half Detector	Stationary CMM*	2.5 μm - 5 μm	
Total	-	≈ 60 µm	

*Coordinate Measuring Machine

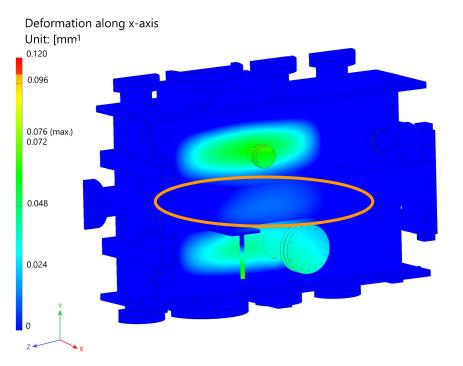
Capacitiv Sensors

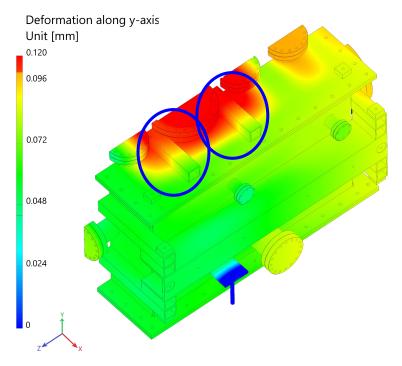
Capacitec

- 2 mm range
- ~40 nm resolution


Measurement Arm

Hexagon Romer 75


- Only tactil measurement possible
- Measuring distance: 1.25 m
- Accuracy: 26 μm
- Easy to transport:
 - < 10 kg
 - No calibration after transport



Deformation of the Vacuum Box

Simulated Deformation of Vacuum Box

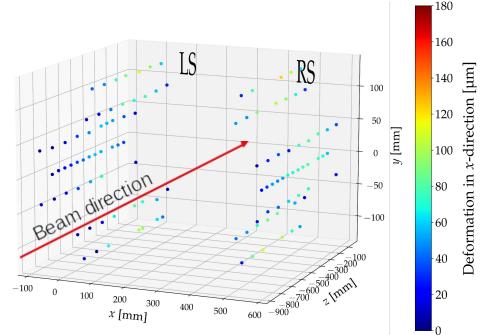
Goal: Max. permissible deformation of 200 µm at height of cap. sensors

Goal: Symmetry between the two square tubes

Measurement of the Deformation of Vacuum Box

Master thesis by J. Petersen

- 1. Reference & Reproducibility
 - \Longrightarrow Accuracy of better than 30 μm
- Lid closing reproducibility
 ⇒ Lid placement better than 33 µm
- 3. Closed box
 - Deformation of about 30 µm
- 4. Box under vacuum

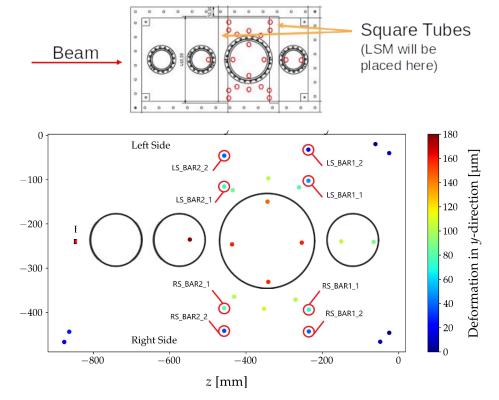


Deformation of Vacuum Box under Vacuum I

Deformation between evacuated and inflated state of the Vacuum Box

Results Box:

- 1. Reproducible deformation in the downstream part
- 2. Symmetry between Left Side and Right Side
- 3. Deformation in the order of $100 \,\mu m$



Deformation of Vacuum Box under Vacuum II

Deformation between evacuated and inflated state of the Vacuum Box

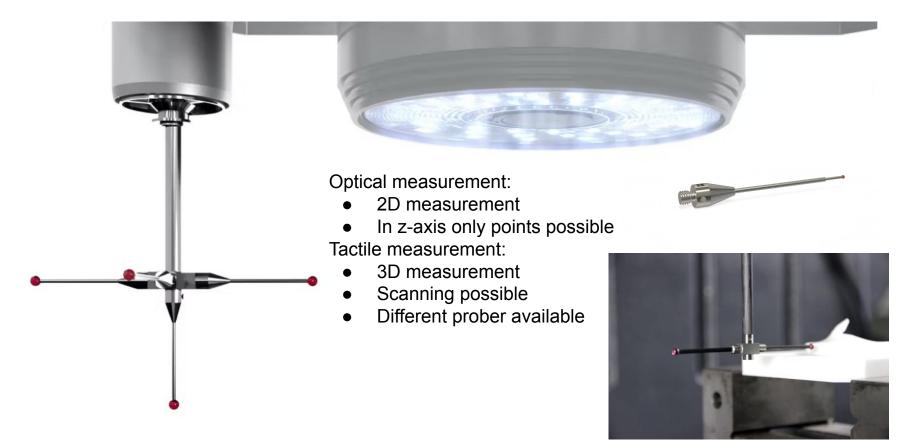
Results Lid:

- Symmetrical deformation of the square tubes (important for possible tilting of the LSM)
- 2. Reproducible deformation
- 3. Order of magnitude of deformation plays a minor role

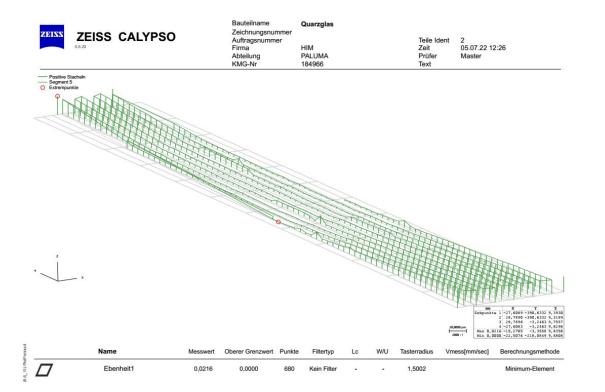
Stationary CMM

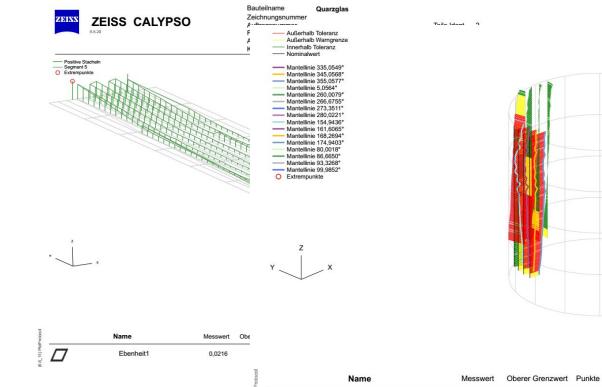
Zeiss O-INSPECT 543

- Optical and tactil measurement
- Measuring volume: 50 cm x 40 cm x 30 cm
- Accuracy: 1.7 μm 4.9 μm


Training was in March and May

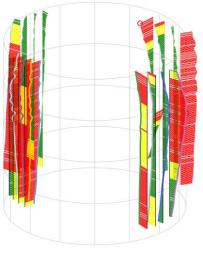
More complicated as Measuring Arm


Preparation for the measurement of LMD components started


Stationary CMM

Examples

Examples



þ/

Zylinderform

0,0844

0,0500

Filtertyp

Tiefpass

Spline

3713

W/U

150 -

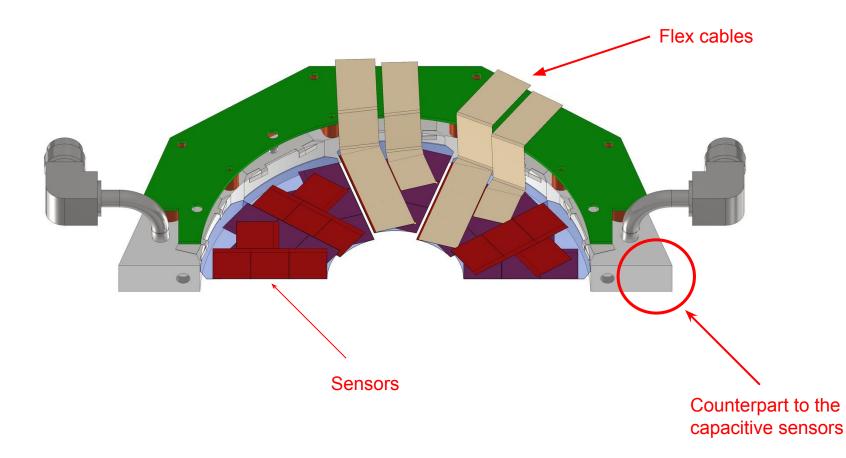
1,4999

Lc

-

	Segment	t 1	Mantellinie	335,0549°	261	8
	Segment	t 2	Mantellinie	345,0568°	261	7
	Segment	t 3	Mantellinie	355,0577°	261	11
	Segment	t 4	Mantellinie	5,0564°	261	91
	Segment	t 5	Mantellinie	260,0079°	261	9
	Segment	t 6	Mantellinie	266,6755°	261	9 9 9
	Segment	£ 7	Mantellinie	273,3511°	261	9
	Segment	t 8	Mantellinie	280,0221°	261	16
	Segment	£ 9	Mantellinie	154,9436°	261	0
	Segment	10	Mantellinie	161,6065°	261	0
	Segment	11	Mantellinie	168,2694°	261	0
	Segment	12	Mantellinie	174,9403°	261	0 0 0 5
	Segment	13	Mantellinie	80,0018°	261	0
	Segment	14	Mantellinie	86,6650°	261	0
	Segment	15	Mantellinie	93,3268°	261	5
	Segment	16	Mantellinie	99,9852°	260	5
Fasterr	adius	V	mess[mm/sec	Berech	nungsme	thode

Segment


Typ

5,000

Höhe/Winkel Punkte Ausreißer

Minimum-Element

Measurements on the half plane

Conclusion

Measurement Arm and Stationary Coordinate Measuring Machine available for Survey of the LMD

Measurement Arm:

- Accuracy better than 30 μm
- First measurement done

Stationary CMM

- Accuracy better than 5 µm
- Training was in March and May
- Preparation for measurements of LMD components ongoing