

CONCLUSION FROM PHASE-0 STS FOR PANDA-STT

Peter Wintz (IKP, FZ Jülich) for the STS and STT Groups

Mitglied der Helmholtz-Gemeinschaft

Oct-11th, 2022 | TRK Session at PANDA CM 2022/3

- Phase-0 Beamtime: STS @ HADES
- Benchmarks for PANDA-STT
 - Straw Operation Performance
 - PASTTREC & TRB3 Readout
 - Straw Calibration
- Conclusion for PANDA-STT

Phase-0: STS @ HADES

- Four weeks beamtime in Feb/Mar 2022
- Physics: hyperon production and decay
- p-beam with 4.5 GeV kin. energy on LH2 target
- New straw stations STS for forward tracking
- New fRPC for time-of-flight

Station	STS1 (FZJ)	STS2 (UJK)	
No. of straws	704	1024	
Straw length	766 mm	1200 mm	
Straw orientation (azimuth.)	0°, 90°, 90°, 0°	0°, 90°, +45°, -45°	
Straw film tube	27µm aluminised Mylar, 10 mm diameter		
Straw pitch in layer	10.14 mm	10.10 mm	
Beam opening	80 x 80 mm ²	160 x 160 mm ²	
Distance to target	3341 mm (STS1.1)	4910 mm (STS2.1)	
Drift gas and pressure (abs.)	Ar/CO2(10%), 2 bar		
Electronic readout	PASTTREC and TRB3		

STS1 and STS2 at HADES (not in final position).

October 11th, 2022

•

٠

STS commissioning proton beam time in 2021

high voltage and dark current tests

Straw Operation Performance

• system implementation in HADES-DAQ and HYDRA SW

STS1 system pre-commissioning in Julich (⁹⁰Sr, ⁵⁵Fe)

time and time-over-threshold data for all channels

- STS operation without failures during 2022 beamtime
 - straw rates (max): ~ 1-2 × 10⁵ s⁻¹
 - short period with ~ 5-6 × $10^5 \, \text{s}^{-1}$ max. rates

Phase-0: STS @ HADES

- particle momenta: < 5.2 GeV/c (pp elastic)
- stable ionization currents, no dark currents (SIS18 extraction cycle: ~ few sec.)
- low gas gain: ~1-2 x 10⁴ (HV=1700V and Ar/CO2(10%) at 2 bar)
- low signal threshold (20 mV), stable NL

Mean

PASTTREC-Readout

QA Procedures and Tests by AGH Krakow Group (Presentations by A. Molenda)

- Full functionality test of each PASTTREC board and channel
- Test equipment set up (charge injection, SW control, readout)
- QA measures: 7 test criteria (s.below)
- Five ASIC parameter sets
- Protocol for each FEB (QA database)
- QA example: 132 FEBs tested, 94% passed ok

Configuration name	Gain	T_{peak}	TC_{C1}	TC_{R1}	TC_{C2}	TC_{R2}
1mV20ns	1 mV/fC	20 ns	6.0 pF	$23 \text{ k}\Omega$	0.6 pF	$11 \text{ k}\Omega$
2mV15ns	2 mV/fC	15 ns	15.0 pF	$7 \text{ k}\Omega$	0.6 pF	$8 \text{ k}\Omega$
2mV20ns	2 mV/fC	20 ns	$7.5 \ \mathrm{pF}$	$27 \text{ k}\Omega$	$0.75 \ \mathrm{pF}$	$17 \text{ k}\Omega$
4 mV15 ns	4 mV/fC	15 ns	13.5 pF	$19 \text{ k}\Omega$	1.5 pF	$23 \text{ k}\Omega$
4 mV 20 ns	4 mV/fC	20 ns	10.5 pF	$27 \text{ k}\Omega$	0.9 pF	$20 \text{ k}\Omega$

AGH

Measurements: Types and Procedures

- Baseline DACs test (for 4mV20ns only)

 checks DACs monotonicity with DAC scan and TOT measurements
- Threshold DAC test (for 4mV20ns only)

 checks DAC monotonicity with DAC scan and TOT measurements
- Baseline measurements (all configurations)
 find baseline settings/corrections for all channels
- Threshold scan (all configurations)
 verification of the baseline settings, shows differences
- Ouick channels test (for 4mV20ns only)
 - checks whether channels give right response for small and big. input charges (further measurements possible only when all channels are good)
- S-curve measurements (all configurations)
 measure the number of counts versus input charge for
 - measure the number of counts versus input charge for selected thresholds, to calculate noise, gains, etc.
- TOT Scan (all configurations)
 - measure the TOT value versus input charge for selected thresholds - allows to calculate charge from TOT value for specific threshold

STS Readout Performance in Experiment

Readout Software and Control by UJ Krakow Group

- PASTTREC old FEBs and new type (21 delivery) used, new type with QA tests passed ok
- ASIC baseline (BL) determination done for each channel (auto-script: BL shifting and scan noise rate)
- BL from QA test taken if NL too low (few channels in STS1)
- Continuous ASIC setting verification during data-taking implemented in DAQ
- Parameter readback (1700ch), ASIC resetting and parameter reloading
- No change in ASIC parameter settings necessary during beamtime (stable NL, stable BL at high rates)
- Parameter set used:
 - 4mV/fC gain, 20ns peaking time (TC param. see table p.5)
 - 20mV thresh. for STS1, 40mV for STS2

STS Calibration and Tracking Procedure

STS1/2 Calibrations by G. Perez-Andrade

Steps

- 1st stage: TDC time spectrum and assum. homogenous straw illumination
 - time offset determination and drift time extraction
 - parametridsation of isochrone radius drift time relation r(t)
 - HADES start detector and particle time-of-flight calibration not yet final
 - high- β tracks (~ 5 GeV/c protons) dominating in raw data, constant time offset assumed for r(t) calibration
- 2nd stage: use reco. tracks \Rightarrow track to wire distance (d=r) and drift time (t_{dr})
 - check if systematic errors and correct, e.g. straw and wire positions
 - re-fit r(t) and re-check & correct syst. errors
 - determine spatial resolution $\sigma(r)$ as function of radius
 - repeat/iteration of $\chi 2$ track fit
- STS 1st stage calibration checked with simulation (Garfield)
 - r(t) from TDC time spectrum fit reproduces e- drift motion and drift velocity v_{dr}(r)

$$\chi^2 = \frac{1}{N-f} \sum_{i}^{N} \left(\frac{d_i - r(t_i)}{\sigma(r)} \right)^2$$

*LGAD and fRPC calibration not yet final

p. 7

still to be done for STS1/2 *

STS In-Beam Data

TDC-Times and Time-Over-Threshold (Presentation by G. Perez-Andrade)

STS Time Offset Determination

Calibration Results by G. Perez-Andrade

- Time offset (T0) determination for each channel (variation seen)
- Two methods to check systematic errors
 - Start (foot) of time distribution rising edge (threshold and slope)
 - Fit of time distribution shape (9 parameter fit, empirical)
- Result: t0 determination accuracy better than 1.5 ns (σ)

Station	T0 (ns) (Thresh.)	T0 (ns) (Fit method)	
STS1.1	372.6	390.8	
STS1.2	373.6	391.8	
STS1.3	373.8	392.4	
STS1.4	374.2	393.0	
STS2.1	360.8	380.7	
STS2.2	361.7	382.0	
STS2.3	362.4	382.6	
STS2.4	362.0	383.0	

STS Maximum Drift Time

(Main Drift Time Measurement Parameter)

- Max. drift time marks end of drift time spectrum
- Tmax value effects: v_{drift} , ϵ , t_0/t_{max} method, ASIC, straw/wire geometry, ...
- Result: very small variation for all STS1&2 stations (< 1ns)
 - Slightly higher tmax in STS2 (longer straws)
 - Small differences found for even/odd channels in STS1 (tbd)

bo	Station	Tmax Mean [ns]	Tmax Sigma [ns]	
eruc	STS1.1	163.7	3.2	
e B	STS1.2	163.5	3.0	
	STS1.3	163.7	3.1	
Ures	STS1.4	163.4	3.4	
-	STS2.1	169.9	2.7	
	STS2.2	170.7	2.8	
	STS2.3	170.6	2.6	
	STS2.4	170.8	2.4	

	Station	Channel	Mean [ns]	Sigma ns]
poq	STS1.1	even	162.2	1.8
met		odd	158.3	2.4
Fit	STS2.1	even	166.4	2.3
		odd	165.8	2.4

STS Space – Drifttime Relation

• Homogenuous straw illumination:
$$R(t) = \left(\frac{\sum_{i=0}^{i_t} N_i}{N}\right) \times (R_{max} - R_{min}) + R_{min}$$

- $R_{max} = 5.05 \text{ mm}, R_{min} = 0.1 \text{ mm}$
- N / R = Σn_i / r(t_i) \Rightarrow r(t) = $\Sigma P_i \times t^i$
- 4th order polynomial function, parameters: $P_0 .. P_4$ and t0

Garfield Simulation: Drift Time

STS Straw Conditions

- Garfield simulation of random proton tracks through single straw, signal generation and drift time (red line fit)
- Comparison with sts1 space drift time relation (green dashed line)
- Good agreement: sts1 calibration by time spectrum reproduces drift motion (r > 1 mm)

Garfield Simulation: Time-over-Threshold

STS Straw Conditions

- Time-over-threshold data (left) and simulation (right)
- Simulation w/o delta-electron tracking
- PASTTREC parameters in transfer function and signal generation
- Good agreement between simulation and data

Recap: STT Testsystem: Calibration & Tracking

20

iso error

Track Reconstruction and Isochrone Resolution for Ar/CO2(20%)

October 11th, 2022

Summary of BM for PANDA-STT

Straw system performance

- Pre-commissioning by ⁹⁰Sr and ⁵⁵Fe data-taking reliable
- PANDA-straw stable operation under experiment conditions
- high particle rates and four weeks beam time period

PASTTREC QA procedures established and verified

- Continuous PASTTREC setting verification during data-taking established
- PASTTREC high rate capability confirmed, e.g. BL stability

Calibration method and procedures developed

- Isochrone calibration using time spectra done
- Calibration step using reco tracks soon

PANDA-STT issues:

- Time offset and time-of-flight for continuous HW-trigger-less readout
- Maybe useful for specific tests: cosmic HW trigger, B=0 tracking mode in PANDA-SW

Thank you for your attention

