

### Preparation and commissioning of the sensor modules for the PANDA Luminosity Detector by Niels Boelger

10.10.2022



# Sensor Modules

### For the final detector

1 module with 8 HV-MAPS per diamond wafer (four on each side)

5 modules form 1 half-plane

Total number of 320 sensors



### For the prototype

1 module with 4 HV-MAPS per diamond wafer (only on one side)

1 module per plane

16 sensors overall





# MuPix sensors for the LMD

MuPix10



matrix A matrix B matrix C 20 mm eoc eoc eoc 3 mm periphery A periphery B periphery C chip periphery

MuPix11



128 x 200 pixels

Single pixel size:  $80 \times 80 \mu m^2$ 

Sensor size: 1 x 2 cm<sup>2</sup>

Setting up the sensor module Sensors for LMD prototype assembly

256 x 200 pixels Final sensor size Setting up DAQ

MuPix10 with bugfixes

First sensors tested in Heidelberg

Sensors for final I MD



# Sensor module assembly

- 1. Test MuPix via probecard
- 2. Bond selected MuPixes to aluminum flexcables
- 3. Test MuPix-flexcable units via cable link
- 4. Glue MuPix-flexcable units on diamond wafer
- 5. Test complete sensor module

# Development of MuPix10 Probecard v2

- 2Ri-2F-2Ri PCB
- Assembly of SMD-Parts and 77-Pad In-Line needles (PTSL)
- Based on MuPix8 Probecard with 62-Pad In-Line and Mupix10 Probecard v1 with 114-Pad In-Line









# Prototype: Assembly of sensor modules

**MuPix-flexcable units** 







Aluminum flexcable from LTU in Ukraine

MuPix and plug attached via TABbonding to flexcables

First sucessfully bonded MuPix8-flexcable unit

 $\rightarrow$  ready for testing

Stress test of mechanical stability

Sensor – Cable connection  $\rightarrow$  stable

Cable – Plug connection → broken





# Prototype: Assembly of sensor modules



#### **Aluminium Flex Cable**



Flexcables for MuPix10 designed

Improved design based on MuPix8 flexcables

Improving mechanical stability by additional space for gluing on plug side

ightarrow sent to CERN and LTU



# Glueing process



Testing the glueing process with transparent glas wafers and broken sensors

Glue: Epoxy Formulation 247

- low viscosity
- stays flexible until -45 °C
- Hardening at 65 °C for 120 h





# Glueing on diamond



Gluing onto diamond fragments



MuPix much cheaper than diamond wafer

Removing MuPix from diamond carrier with a scalpel works well

### Thermal and vacuum stress tests



In vacuum chamber at 0.1 mbar: 100 cycles of heating up to 20 °C (1h) and cooling down to  $\approx$  -15 °C (1h)



Glue passed 24h test in LN<sub>2</sub> (-196 °C)



## Sensor Laser-Setup

CNC milling machine, featuring a green 100 mW industrial laser for reproduceable sensor tests

- Intransparent safety box
- Supporting plate for sensorboard and sensor modules





- MTO-Laser M-33A532-100-G
- 532 nm (green)



## Sensor Laser-Setup

CNC milling machine, featuring a green 100 mW industrial laser for reproduceable sensor tests

- Intransparent safety box
- Supporting plate for sensorboard and sensor modules





- MTO-Laser M-33A532-100-G
- 532 nm (green)



# Summary

MuPix8-flexcable units ready for testing with new DAQ MuPix10 Probecard v2 ready for testing Glue Epoxy Formulation 247 fits the requirements Sensor Laser-Setup ready for testing

### Next steps

- 1. Testing MuPix8-flexcable unit via cable link
- 2. Getting MuPix10 running with new DAQ
- 3. Testing MuPix10 via probecard
- 4. Setting up the glueing procedure for 4 MuPix-flexcable units onto diamond

