Update on mechanics, cooling and vacuum of the luminosity detector

Heinrich Leithoff

Helmholtz Institut Mainz

PANDA-Collaboration-Meeting Darmstadt October 10, 2022

Helmholtz Institute Mainz

Overview of the luminosity detector

- 4 retractable layers of active sensors in secondary vacuum
- rigid vacuum box for good position information of the sensors
- active cooling necessary

Mechanics status

- prototype box build and tested
- vacuum box deformation under vacuum ${<}130\,\mu\text{m}$
- half detectors mounted on lids, closing postion repeatable within $50\,\mu\text{m}$
- glueing of foil cone in the box after positioning the inner beampipe
- inner beampipe changed to 68 mm outer diameter in titanium
- final box production in preparation

Cooling system: General setup

	sensors	LDO voltage	resistance in	multiplexer
		regulator	flexcables	etc.
worst case	1040 W	320 W	160 W	${\sim}100\text{W}$
likely case	380 W	120 W	20 W	${\sim}100{\rm W}$

- worst case: 7 mW mm^{-2} , likely case: 2.5 mW mm^{-2}
- total estimated heat load per half detector: 310 W to 810 W
- for cooling test: copper dummys and high power resistors

Simulation

- no transition or radiative effects
- inlet temperature -20 °C, pressure difference 1 bar
- diamond in nominal thickness
- maximum temperature:

```
worst case: \sim39 °C expected case: \sim0 °C
```

Cooling cycle test

Cooling cycle:

- set bath temperature to $-20\,^\circ\text{C}$
- when $-20\,^\circ\text{C}$ is reached wait 10 min
- switch on power supply and wait 15 min
- switch off power supply and set bath temperature to 20 $^\circ\text{C}$
- when 20 $^\circ\text{C}$ is reached wait 10 min
- ${>}500$ cycles run with 340 W (14 W/module)
- ${>}500$ cycles with 465 W (19 W/module)
 - expected case: $10\,W/module$
 - no changes in cooling behaviour
 - no leaks in the cooling circuit

Vacuum concept

- two separate vacuum volumes (beampipe and box)
- one turbopump per volume
- common scroll pump
- initial slow pumping to reduce risk of foil damage
- pumps, valves and gauges controlled by PLC

Long term vacuum tests

- lowest pressure in beampipe: $5\times 10^{-8}\,\text{mbar}$
- lowest pressure in box: $6\times 10^{-7}\,mbar$
- long pumping time, further improvement needs more pumps (additional cryo pump possible)
- test without electronics in vacuum!

Vacuum tests 2

- pumping procedure with focus on shorter duration
- slow pumping in the beginning to protect the transition foil
- $1\times 10^{-6}\,\text{mbar}$ in beampipe reached after ${\sim}9h$ of pumping
- automatisation will further shorten the time needed

Summary and outlook

- vacuum box prototype successfully tested for mechanical stability and handling
- half detector cooling working
- vacuum system performance successfully tested

What is next:

- production of half detector prototype with sensors
- production of final vacuum box
- automatisation of vacuum procedures
- production of final detector

Inner beampipe

- connection to vacuum box changed to CF type flange
- seamless pipe from titanium grade 2
- outer pipe diameter 68 mm, wall thickness $\leq 750\,\mu\text{m}$

Vacuum box lid 1

- houses half detector and LSM with all feedthroughs
- allows easier installation and testing
- next steps: LSM and prototype installation

Vacuum box lid 2

- lower lid installation procedure successfully tested
- repeatability of lid position good (${\sim}50\,\mu\text{m}),$ see talk by Jannik

Vacuum box lid 2

- lower lid installation procedure successfully tested
- repeatability of lid position good (${\sim}50\,\mu\text{m})$, see talk by Jannik

Mechanics: Vacuum box

- mechanical rigidity within expected parameters, see talk by Jannik
- vacuum tests under preparation

H. Leithoff (HIM)

Cooling cycle result I

- No change in 500 cycles for 340 W
- Placement of modules difficult du to stiff copper cabling and heavy weight
- Well-placed modules show acceptable temperature under realistic conditions

Cooling cycle result II

- Small changes after 500 cycles for 465 W
- Three copper dummies lost contact
- Well-placed modules still ok
- Contact loss due to mechanical collision of resistors and inner beampipe aligner (not a problem with sensors)