Review Saclay approach

Miguel Ángel Escobedo

Instituto Galego de Física de Altas Enerxías Universidade de Santiago de Compostela

December 12, 2022

Work done in collaboration with Jean-Paul Blaizot

Miguel Ángel Escobedo (IGFAE)

Review Saclay approach

1/20

• Discussed in Blaizot and Escobedo, 2021.

э

・ロト ・四ト ・ヨト ・ヨト

- Discussed in Blaizot and Escobedo, 2021.
- Valid for the case $E \gg \Gamma$.

イロト イポト イヨト イヨト

э

- Discussed in Blaizot and Escobedo, 2021.
- Valid for the case $E \gg \Gamma$.
- We consider the dissipative part of the interaction as a perturbation.

э

< ∃⇒

- Discussed in Blaizot and Escobedo, 2021.
- Valid for the case $E \gg \Gamma$.
- We consider the dissipative part of the interaction as a perturbation.
- We take into account the effects of the energy gap between singlets and octets.

- Discussed in Blaizot and Escobedo, 2021.
- Valid for the case $E \gg \Gamma$.
- We consider the dissipative part of the interaction as a perturbation.
- We take into account the effects of the energy gap between singlets and octets.
- For the real part of the potential we consider two scenarios. HTL and a lattice inspired scenario.

- Discussed in Blaizot and Escobedo, 2021.
- Valid for the case $E \gg \Gamma$.
- We consider the dissipative part of the interaction as a perturbation.
- We take into account the effects of the energy gap between singlets and octets.
- For the real part of the potential we consider two scenarios. HTL and a lattice inspired scenario.
- The decay width comes from a HTL computation using as input the binding energy and wave function of the singlet.

Decay vs T Perturbative case

Decay vs T Lattice inspired scenario. $\Upsilon(1S)$

Decay vs T Lattice inspired scenario. $\Upsilon(2S)$

Masses and binding energies Perturbative case

• We use the 1S mass at tree level, $M_b = \frac{M_{\Upsilon(1S)}}{2}.$

Image: Image:

э

Masses and binding energies Perturbative case

- We use the 1S mass at tree level, $M_b = \frac{M_{\Upsilon(1S)}}{2}$.
- We solve the Schrödinger equation with the real part of the HTL potential and from there we obtain the binding energy.

Perturbative case

Lattice inspired scenario

• We use $M_b = 4882 MeV$.

э

Lattice inspired scenario

- We use $M_b = 4882 MeV$.
- This is the mass used in the paper from which we get the static potential data (Rothkopf and Lafferty, 2020) to reproduce bottomonium spectroscopy.

Lattice inspired scenario

- We use $M_b = 4882 \, MeV$.
- This is the mass used in the paper from which we get the static potential data (Rothkopf and Lafferty, 2020) to reproduce bottomonium spectroscopy.
- As real potential, we use a parametrization that was shown in (Rothkopf and Lafferty, 2018) to reproduce the static potential within errors.

Lattice inspired scenario. $\Upsilon(1S)$

Lattice inspired scenario. $\Upsilon(2S)$

We do not include p dependence in our approach. Hence, Γ depends only on temperature.

Т	$\Upsilon(1S)$ perturbative	$\Upsilon(1S)$ lattice	$\Upsilon(2S)$ lattice
200	6.52	0.0889	7
300	19.54	4.96	58.5
400	40.45	40.4	142

Image: A matrix

э

11 / 20

 R_{AA} for fixed Γ

$$\Gamma = \begin{cases} 0 & T < 200 \text{ MeV} \\ \frac{T}{2} - 100 \text{ MeV} & T > 200 \text{ MeV} \end{cases}$$

- Bjorken evolution.
- Glauber model.
- Initial temperature scales with the number of participants.

э

R_{AA} for fixed Γ

Miguel Ángel Escobedo (IGFAE)

Review Saclay approach

December 12, 2022 13 / 20

We do not include p dependence in our model. However, we can compute R_{AA} in the given centrality window

 $R_{AA}|_{0-10 centrality} = 0.32$

э

Survival probability

- $T = 300 \, MeV$
- Initial state is a medium $\Upsilon(1S)$ state.

3

Survival probability

Perturbative case

Survival probability

Lattice inspired scenario

Vacuum state transition

Perturbative case

We computed numerically the overlap between Yukawa potential eigenvectors and Coulomb ones.

Lattice inspired scenario

- We could not directly compare with the *T* = 0 eigenvectors in an easy way. Our code is set to work with potentials that go zero at infinity, which is not the case of the Cornell potential.
- Then we compare with a very small temperature in which medium effects are very mild.
- We see that medium and vacuum eigenvectors are almost identical at the given temperature.

A B + A B +

Vacuum state transition

Miguel Ángel Escobedo (IGFAE)

December 12, 2022 19 / 20

Vacuum state transition

Miguel Ángel Escobedo (IGFAE)

20 / 20