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The model

▶ Work by Blaizot & Escobedo:
• Heavy quarks-Plasma interaction described using NRQCD

• Derivation of quantum master equations in the quantum brownian motion regime (high
temperature) to describe the evolution of the density operator (not Lindblad equations)

▶ Our work:
• Extension to preserve positivity ⇒ Lindblad equations

• Direct resolution in 1D and application to charmonium system

• Study of the validity of a semi-classical treatment (not covered in this talk)

• New potential developped specifically for 1D studies
R. Katz, S.D., P-B. Gossiaux (2022)

SU(3): J-P. Blaizot, M. Escobedo (2018)
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https://link.springer.com/article/10.1140/epja/s10050-022-00846-z
https://link.springer.com/article/10.1007%2FJHEP06%282018%29034


Quantum Master Equation

d
dt
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singlet-octet
transitions

octet density
operator

singlet density
operator

Higher-order terms,
expected to be
subleading

L = L0 + L1 + L2 + L3 + L4

L0 : Kinetic terms

L1 : Static screening (V)

L2 : Fluctuations (W)

L3/L4 : Dissipation (W’/W”/W”’)

Transition between color states
and dissipation effects

Dynamical
processes
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Quantum Master Equation
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▶ na
x : color charge density

na
x = δ(x − r) ta ⊗ I− I⊗ δ(x − r) t̃a

▶ Can recover L3 from L2 by performing:
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▶ Additionnal terms ⇒ L4
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1D Potential
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▶ Based on a 3D potential inspired from Lattice results D. Lafferty, A. Rothkopf (2020)

▶ Real part: parametrization to reproduce 3D mass spectra
▶ Imaginary part: separated in a coulombic and string part, aims at reproducing 3D

decay widths
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.056010z


1D Potential
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▶ Very good agreement for the mass spectra
▶ Good agreement for the decay widths, differences due to the large distance

behaviour of the imaginary part
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Reaction rates
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▶ Increase with temperature and momentum
▶ Stronger increase for J/Ψ
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Charmonium gaussian singlet initial state T = 300 MeV
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▶ Initial gaussian singlet
state at T = 300 MeV
(σ = 0.1 fm)

▶ Octet populated as
a dipole

▶ Delocalization of initial
state along s = s′ axis

▶ Remaining central
correlation
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Charmonium gaussian singlet initial state T = 300 MeV
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▶ Instantaneous projections on
vacuum eigenstates defined as
PΦ(t) =< Φ|Ds(t)|Φ >

▶ Equilibration phase with transitions
between states

▶ χc populated later due to
different transitions

▶ Decay phase afterwards, with same
decay rate for all states
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Asymptotic Wigner distribution
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▶ Large distance
▶ Distribution progressively becomes Gaussian
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Asymptotic Wigner distribution
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Charmonium gaussian octet initial state in a cooling medium
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▶ Cooling medium with
gaussian octet initial state
(σ = 0.1 fm)

▶ T (t) = T0

(
1

1+t

)1/3

▶ T0 = 600 MeV
▶ Delocalization of initial

state along s = s′ axis
▶ Seems to reach same

kind of limit
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Charmonium gaussian octet initial state in a cooling medium

0 5 10 15 20

Time (fm/c)

10−3

10−2

10−1

100

P
ro

b
ab

ili
ti

es

1S-like

1P-like

2S-like

1S-like

1P-like

2S-like

▶ Formation of bound states
at early times

▶ Helped by the initial proximity
of the two quarks

▶ Global evolution similar to the
fixed temperature case
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