The Nantes approach

Stéphane Delorme
EMMI Rapid Reaction Task Force

Collaborators:

- Pol-Bernard Gossiaux
- Thierry Gousset
- Roland Katz
- Aoumeur Daddi Hammou

The model

- Work by Blaizot \& Escobedo: SU(3): J-P. Blaizot, M. Escobedo (2018)
- Heavy quarks-Plasma interaction described using NRQCD
- Derivation of quantum master equations in the quantum brownian motion regime (high temperature) to describe the evolution of the density operator (not Lindblad equations)
- Our work:
- Extension to preserve positivity \Rightarrow Lindblad equations
- Direct resolution in 1D and application to charmonium system
- Study of the validity of a semi-classical treatment (not covered in this talk)
- New potential developped specifically for 1D studies R. Katz, S.D., P-B. Gossiaux (2022)

Quantum Master Equation

$$
\mathcal{L}=\mathcal{L}_{0}+\mathcal{L}_{1}+\mathcal{L}_{2}+\mathcal{L}_{3}+\mathcal{L}_{4}
$$

\mathcal{L}_{0} : Kinetic terms
\mathcal{L}_{1} : Static screening (V)
Higher-order terms, expected to be subleading
\mathcal{L}_{2} : Fluctuations (W)
$\mathcal{L}_{3} / \mathcal{L}_{4}$: Dissipation (W'W"'W"') $\begin{aligned} & \text { Dynamical } \\ & \text { processes }\end{aligned}$
Transition between color states and dissipation effects

Quantum Master Equation

$$
\begin{array}{ll}
\mathcal{L}_{0} \mathcal{D}=-i\left[H_{Q}, \mathcal{D}\right] & \begin{array}{l}
n_{x}^{a}: \text { color charge density } \\
\mathcal{L}_{1} \mathcal{D}=-\frac{i}{2} \int_{x x^{\prime}}^{a} V\left(x-x^{\prime}\right)\left[n_{x}^{a} n_{x^{\prime}}^{a}, \mathcal{D}\right] \\
n_{x}^{a}=\delta(x-r) t^{a} \otimes \mathbb{I}-\mathbb{I} \otimes \delta(x-r) \tilde{t}^{a}
\end{array} \\
\mathcal{L}_{2} \mathcal{D}=\frac{1}{2} \int_{x x^{\prime}} W\left(x-x^{\prime}\right)\left(\left\{n_{x}^{a} n_{x^{\prime}}^{a}, \mathcal{D}\right\}-2 n_{x}^{a} \mathcal{D} n_{x^{\prime}}^{a}\right) & \\
\mathcal{L}_{3} \mathcal{D}=-\frac{i}{4 T} \int_{x x^{\prime}} W\left(x-x^{\prime}\right)\left(\dot{n}_{x}^{a} \mathcal{D} n_{x^{\prime}}^{a}-n_{x}^{a} \mathcal{D} \dot{n}_{x^{\prime}}^{a}+\frac{1}{2}\left\{\mathcal{D},\left[\dot{n}_{x}^{a}, n_{x^{\prime}}^{a}\right]\right\}\right)
\end{array}
$$

- Can recover \mathcal{L}_{3} from \mathcal{L}_{2} by performing:

$$
\left(\left\{n_{x}^{a} n_{x^{\prime}}^{a}, \mathcal{D}\right\}-2 n_{x}^{a} \mathcal{D} n_{x^{\prime}}^{a}\right) \longrightarrow\left\{\left(n_{x}^{a}-\frac{i}{4 T} \dot{n}_{x}^{a}\right)\left(n_{x^{\prime}}^{a}+\frac{i}{4 T} \dot{n}_{x^{\prime}}^{a}\right), \mathcal{D}\right\}-2\left(n_{x}^{a}+\frac{i}{4 T} \dot{n}_{x}^{a}\right) \mathcal{D}\left(n_{x^{\prime}}^{a}-\frac{i}{4 T} \dot{n}_{x^{\prime}}^{a}\right)
$$

- Additionnal terms $\Rightarrow \mathcal{L}_{4}$

1D Potential

- Based on a 3D potential inspired from Lattice results D. Lafferty, A. Rothkopf (2020)
- Real part: parametrization to reproduce 3D mass spectra
- Imaginary part: separated in a coulombic and string part, aims at reproducing 3D decay widths

1D Potential

- Very good agreement for the mass spectra
- Good agreement for the decay widths, differences due to the large distance behaviour of the imaginary part

Reaction rates

- Increase with temperature and momentum
- Stronger increase for $\mathrm{J} / \mathrm{\Psi}$

Charmonium gaussian singlet initial state $T=300 \mathrm{MeV}$

- Initial gaussian singlet state at $\mathrm{T}=300 \mathrm{MeV}$ ($\sigma=0.1 \mathrm{fm}$)
- Octet populated as a dipole
- Delocalization of initial state along $s=s^{\prime}$ axis
- Remaining central correlation

Charmonium gaussian singlet initial state $\mathrm{T}=300 \mathrm{MeV}$

- Instantaneous projections on
 vacuum eigenstates defined as $P_{\Phi}(t)=<\Phi\left|\mathcal{D}_{s}(t)\right| \Phi>$
- Equilibration phase with transitions between states
- χ_{c} populated later due to different transitions
- Decay phase afterwards, with same decay rate for all states

Asymptotic Wigner distribution

- Large distance
- Distribution progressively becomes Gaussian

Asymptotic Wigner distribution

- $\sqrt{\left\langle p^{2}\right\rangle}$ does not scale as $\sqrt{\frac{M T}{2}}$ (dotted lines)
- Equilibrium limit modified by \mathcal{L}_{4}
- At large distances, scaling as
$\sqrt{\frac{1}{1+\frac{\gamma}{2}} \frac{M T}{2}}$ with $\gamma=\frac{\tilde{W}^{(4)}(0)}{16 M T \tilde{W}^{\prime \prime}(0)}$ (dashed lines)

Charmonium gaussian octet initial state in a cooling medium

- Cooling medium with gaussian octet initial state ($\sigma=0.1 \mathrm{fm}$)
- $T(t)=T_{0}\left(\frac{1}{1+t}\right)^{1 / 3}$
- $T_{0}=600 \mathrm{MeV}$
- Delocalization of initial state along $s=s^{\prime}$ axis
- Seems to reach same kind of limit

Charmonium gaussian octet initial state in a cooling medium

- Formation of bound states at early times
- Helped by the initial proximity of the two quarks
- Global evolution similar to the fixed temperature case

