Munich-KSU Contribution to Suppression and (Re)Generation of Quarkonium in Heavy-lon Collisions at the LHC

Peter Vander Griend on behalf of Nora Brambilla, Miguel Escobedo, Ajaharul Islam, Michael Strickland, Anurag Tiwari, Antonio Vairo, and Johannes Weber
University of Kentucky
Fermi National Accelerator Laboratory

12 December 2022

Munich-KSU Approach

- aim: describe the out-of-equilibrium, in-medium evolution of heavy quarkonium states
- tools: potential nonrelativistic QCD (pNRQCD) and the formalism of open quantum systems (OQS)
- pNRQCD: an EFT of QCD describing the strong dynamics of small heavy-heavy bound states
- OQS: formalism to treat the out-of-equilibrium evolution of a system (quarkonium) in the presence of an environment (QGP)
- method and results are fully quantum, non abelian, heavy quark number conserving; take into account dissociation and recombination; quantum field theoretically describe the nonequilibrium evolution; depend only on the transport coefficients taken from lattice data

Physical Setup

work with hierarchy of scales: $M \gg 1 / a_{0} \gg(\pi) T \gg E$

- heavy quark mass M is a scheme dependent quantity; we work in $1 S$ scheme

$$
M=m_{b}=m_{\Upsilon(1 S)} / 2=4.73 \mathrm{GeV}
$$

- Bohr radius calculated by solving its defining relation with the 1-loop, 3-flavor running of α_{s} with $\Lambda_{\mathrm{MS}}^{N_{f}=3}=332 \mathrm{MeV}$

$$
a_{0}=2 / C_{f} \alpha_{s}\left(1 / a_{0}\right) m_{b}=0.678 \mathrm{GeV}^{-1}
$$

- thermal scale related to temperature of the medium (up to factor(s) of π):

$$
190<T / \mathrm{MeV}<500
$$

- binding energy is scheme dependent quantity; Coulombic binding energy sets the scale of the spacing of the energy levels

$$
|E|=1 /\left(M a_{0}^{2}\right)=460 \mathrm{MeV}
$$

pNRQCD^{1} for in-medium Bottomonium ${ }^{2}$

$$
\begin{aligned}
\mathcal{L}_{\mathrm{PNRQCD}}= & \operatorname{Tr}\left[S^{\dagger}\left(i \partial_{0}-h_{s}\right) S+\tilde{O}^{\dagger}\left(i \partial_{0}-h_{o}\right) \tilde{O}+\tilde{O}^{\dagger} \mathbf{r} \cdot g \tilde{\mathbf{E}} S\right. \\
& \left.+S^{\dagger} \mathbf{r} \cdot g \tilde{\mathbf{E}} \tilde{O}+\frac{1}{2} \tilde{O}^{\dagger}\{\mathbf{r} \cdot g \tilde{\mathbf{E}}, \tilde{O}\}\right]
\end{aligned}
$$

- singlet and octet field S and O interacting via chromo-electric dipole vertices
- $h_{s, o}=\frac{\mathbf{p}^{2}}{M}+V_{s, o}:$ singlet, octet Hamiltonian
- $V_{s}=-\frac{C_{f} \alpha_{s}(1 / a 0)}{r}$: attractive singlet potential
- $V_{o}=\frac{\alpha_{s}(1 / a 0)}{2 N_{c} r}$: repulsive octet potential
- $\tilde{E}^{a, i}(s, \mathbf{0})=\Omega^{\dagger}(s) E^{a, i}(s, \mathbf{0}) \Omega(s)$ where

$$
\Omega(s)=\exp \left[-i g \int_{-\infty}^{s} \mathrm{~d} s^{\prime} A_{0}\left(s^{\prime}, \mathbf{0}\right)\right]
$$

- derive coupled evolution equations for singlet and octet density matrices $\rho_{s}(t)$ and $\rho_{o}(t)$

[^0]
Diagrammatic Evolution

singlet evolution given by

$$
\begin{aligned}
& \frac{\mathrm{d} \rho_{s}(t)}{\mathrm{d} t}=-i\left[h_{s}, \rho_{s}(t)\right]-\Sigma_{s} \rho_{s}(t)-\rho_{s}(t) \Sigma_{s}^{\dagger}+\bar{\Xi}_{s o}\left(\rho_{o}(t)\right) \\
& \frac{\mathrm{d} \rho_{o}(t)}{\mathrm{d} t}=-i\left[h_{o}, \rho_{o}(t)\right]-\Sigma_{o} \rho_{o}(t)-\rho_{o}(t) \Sigma_{o}^{\dagger}+\bar{\Xi}_{o s}\left(\rho_{s}(t)\right)+\bar{\Xi}_{o o}\left(\rho_{o}(t)\right)
\end{aligned}
$$

where

$$
\bar{E}_{o o}\left(\rho_{o}(t)\right)
$$

Elements of Evolution Equations

- medium interactions encoded in

$$
A_{i}^{u v}=\frac{g^{2}}{6 N_{c}} \int_{0}^{\infty} \mathrm{d} s e^{-i h_{u} s} r^{i} e^{i h_{v} s}\left\langle\tilde{E}^{a, j}(0, \mathbf{0}) \tilde{E}^{\mathrm{a}, j}(s, \mathbf{0})\right\rangle
$$

- for $(\pi) T \gg E$, exponentials may be expanded; up to linear order

$$
A_{i}^{u v}=\frac{r_{i}}{2}(\kappa-i \gamma)+\kappa\left(-\frac{i p_{i}}{2 M T}+\frac{\Delta V_{u v}}{4 T} r_{i}\right)
$$

- κ is the heavy quarkonium momentum diffusion coefficient; γ is its dispersive counterpart
- $\Sigma_{s}^{(\dagger)}$ encode the in-medium width and mass shift; state of the art results, $\Upsilon(1 S)$ decay width given up to $(E / T)^{2}$ by

$$
\langle 1 S| \Gamma|1 S\rangle=3 a_{0}^{2} \kappa\left\{1-\frac{2 N_{c}^{2}-1}{2\left(N_{c}^{2}-1\right)} \frac{E}{T}+\frac{\left(2 N_{c}^{2}-1\right)^{2}}{12\left(N_{c}^{2}-1\right)^{2}}\left(\frac{E}{T}\right)^{2}\right\}
$$

and mass shift by

$$
\langle 1 S| \delta m|1 S\rangle=\frac{3}{2} a_{0}^{2} \gamma
$$

Extraction of Transport Coefficients

Figure: (Left) Direct, quenched lattice measurement of the heavy quark momentum diffusion coefficient. ${ }^{3}$ (Right) Indirect extractions ${ }^{4}$ of $\hat{\gamma}=\gamma / T^{3}$ from unquenched lattice measurements of $\delta M(1 S) .{ }^{5}$
We solve the Lindlbad equation using the upper, central, and lower $\hat{\kappa}(T)=\kappa(T) / T^{3}$ curves and $\hat{\gamma}=\gamma / T^{3}=\{-3.5,-2.6,0\}$.

[^1] 7, 074506 (Larsen, Meinel, Mukherjee, Petreczky).

Evolution

- Gaussian-smeared delta initial state

$$
\psi_{\ell}\left(t_{0}\right) \propto r^{\ell} e^{-r^{2} /\left(0.2 a_{0}\right)^{2}}
$$

- initialize wave function at $t=0$; evolve in vacuum until initialization of coupling to medium at $t=0.6 \mathrm{fm}$; evolve in vacuum when local temperature falls below $T_{f}=190 \mathrm{MeV}$
- medium evolution implemented using a $3+1 \mathrm{D}$ dissipative relativistic hydrodynamics code using a realistic equation of state fit to lattice QCD measurements
- approximately $7-9 \times 10^{5}$ physical trajectories
- production point sampled in transverse plane using nuclear binary collision overlap profile $N_{A A}^{\text {bin }}(x, y, b)$, initial p_{T} from an E_{T}^{-4} spectrum, and ϕ uniformly in $[0,2 \pi)$

Homework 1: Reaction Rates

- in-medium width calculated in pNRQCD:

$$
\langle 1 S| \Gamma|1 S\rangle=3 a_{0}^{2} \kappa\left\{1-\frac{2 N_{c}^{2}-1}{2\left(N_{c}^{2}-1\right)} \frac{E}{T}+\frac{\left(2 N_{c}^{2}-1\right)^{2}}{12\left(N_{c}^{2}-1\right)^{2}}\left(\frac{E}{T}\right)^{2}\right\}
$$

Figure: The in-medium width of the $\Upsilon(1 S)$. Dashed, solid and dot-dashed curves represent the lower, central and upper determinations of $\hat{\kappa}(T)=\kappa / T^{3}$.

Homework 2.(a): in-medium Corrections

- the heavy quark mass M and the binding energy E are scheme dependent quantities
- M enters our formalism as an input parameter and receives no medium corrections
- we work in the $1 S$ scheme in which M is half the ground state mass
- the Coulombic binding energy is calculated from M and a_{0} : $|E|=1 /\left(M a_{0}^{2}\right)$
- the in-medium mass shift of the ground state is a non-scheme-dependent, observable quantity; from this, one can, in principle, extract an in-medium correction to M and to E

$$
\langle 1 S| \delta m|1 S\rangle=\frac{3}{2} a_{0}^{2} \gamma
$$

Ground State Mass Shift

Figure: The in-medium mass shift of the $\Upsilon(1 S)$. Dashed, solid, and dot-dashed curves represent $\hat{\gamma}=\gamma / T^{3}=\{-3.5,-2.6,0\}$, respectively.

Homework 2.(b): p-Dependence of Γ

- we are comoving with the medium, so Γ has no p-dependence
- can be added

Homework 3.($a, b)$: Suppression for Linear Г

- solve for functional form of $\hat{\kappa}(T)$ producing specified linear $\Gamma(T)$
- suppression results:

Figure: Survival probability of the $\Upsilon(1 S)$ with linear $\Gamma(T)$. "No Jumps" represents suppression; "Jumps" represents suppression and regeneration.

Homework 4.(a, b): Ground State Suppression

- in-medium ground state calculated taking medium interactions as quantum mechanical perturbations
- suppression results:

Figure: Survival probabilities of the vacuum and in-medium ground states in the bottom sector as a function of time t.

Thank you!

[^0]: ${ }^{1}$ Nucl.Phys.B 566 (2000) 275 (Brambilla, Pineda, Soto, Vairo)
 ²Phys. Rev. D 97 (2018) 7, 074009 (Brambilla, Escobedo, Soto, Vairo)

[^1]: ${ }^{3}$ Phys. Rev. D 102, 074503 (2020) (Brambilla, Leino, Petreczky, Vairo) ${ }^{4}$ Phys. Rev. D 100 (2019) 5, 054025 (Brambilla, Escobedo, Vairo, PVG) ${ }^{5}$ JHEP 11 (2018) 088 (Kim, Petreczky, Rothkopf); Phys.Rev.D 100 (2019)

