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Munich-KSU Approach

▶ aim: describe the out-of-equilibrium, in-medium evolution of
heavy quarkonium states

▶ tools: potential nonrelativistic QCD (pNRQCD) and the
formalism of open quantum systems (OQS)
▶ pNRQCD: an EFT of QCD describing the strong dynamics of

small heavy-heavy bound states
▶ OQS: formalism to treat the out-of-equilibrium evolution of a

system (quarkonium) in the presence of an environment (QGP)

▶ method and results are fully quantum, non abelian, heavy
quark number conserving; take into account dissociation and
recombination; quantum field theoretically describe the
nonequilibrium evolution; depend only on the transport
coefficients taken from lattice data
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Physical Setup

work with hierarchy of scales: M ≫ 1/a0 ≫ (π)T ≫ E

▶ heavy quark mass M is a scheme dependent quantity; we work
in 1S scheme

M = mb = mΥ(1S)/2 = 4.73 GeV

▶ Bohr radius calculated by solving its defining relation with the
1-loop, 3-flavor running of αs with ΛNf =3

MS
= 332 MeV

a0 = 2/Cf αs(1/a0)mb = 0.678 GeV−1

▶ thermal scale related to temperature of the medium (up to
factor(s) of π):

190 < T/MeV < 500

▶ binding energy is scheme dependent quantity; Coulombic
binding energy sets the scale of the spacing of the energy
levels

|E | = 1/
(
Ma20

)
= 460 MeV
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pNRQCD1 for in-medium Bottomonium2

LpNRQCD = Tr

[
S†(i∂0 − hs)S + Õ†(i∂0 − ho)Õ + Õ†r · g Ẽ S

+S†r · g Ẽ Õ +
1

2
Õ†

{
r · g Ẽ , Õ

}]
▶ singlet and octet field S and O interacting via chromo-electric

dipole vertices

▶ hs,o = p2

M + Vs,o : singlet, octet Hamiltonian

▶ Vs = −Cf αs (1/a0)
r : attractive singlet potential

▶ Vo = αs (1/a0)
2Nc r

: repulsive octet potential

▶ Ẽ a,i (s, 0) = Ω†(s)E a,i (s, 0)Ω(s) where

Ω(s) = exp
[
−ig

∫ s
−∞ ds ′A0(s

′, 0)
]

▶ derive coupled evolution equations for singlet and octet
density matrices ρs(t) and ρo(t)

1Nucl.Phys.B 566 (2000) 275 (Brambilla, Pineda, Soto, Vairo)
2Phys. Rev. D 97 (2018) 7, 074009 (Brambilla, Escobedo, Soto, Vairo)
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Diagrammatic Evolution

singlet evolution given by

dρs(t)

dt
= −i [hs , ρs(t)]− Σsρs(t)− ρs(t)Σ

†
s + Ξso(ρo(t))

dρo(t)

dt
= −i [ho , ρo(t)]− Σoρo(t)− ρo(t)Σ

†
o + Ξos(ρs(t)) + Ξoo(ρo(t))

where

Σsρs(t) ∼ Σoρo(t)∼

Ξso(ρo(t)) ∼ Ξos(ρs(t))∼

Ξoo(ρo(t))∼
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Elements of Evolution Equations

▶ medium interactions encoded in

Auv
i = g2

6Nc

∫∞
0 ds e−ihusr ie ihv s⟨Ẽ a,j(0, 0)Ẽ a,j(s, 0)⟩

▶ for (π)T ≫ E , exponentials may be expanded; up to linear
order

Auv
i = ri

2 (κ− iγ) + κ
(
− ipi

2MT + ∆Vuv
4T ri

)
▶ κ is the heavy quarkonium momentum diffusion coefficient; γ

is its dispersive counterpart

▶ Σ
(†)
s encode the in-medium width and mass shift; state of the

art results, Υ(1S) decay width given up to (E/T )2 by

⟨1S |Γ|1S⟩ = 3a20κ
{
1− 2N2

c−1
2(N2

c−1)
E
T + (2N2

c−1)2

12(N2
c−1)2

(
E
T

)2}
and mass shift by

⟨1S |δm|1S⟩ = 3
2a

2
0γ
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Extraction of Transport Coefficients
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Figure: (Left) Direct, quenched lattice measurement of the heavy quark
momentum diffusion coefficient.3 (Right) Indirect extractions4 of
γ̂ = γ/T 3 from unquenched lattice measurements of δM(1S).5

We solve the Lindlbad equation using the upper, central, and lower
κ̂(T ) = κ(T )/T 3 curves and γ̂ = γ/T 3 = {−3.5, −2.6, 0}.

3Phys. Rev. D 102, 074503 (2020) (Brambilla, Leino, Petreczky, Vairo)
4Phys. Rev. D 100 (2019) 5, 054025 (Brambilla, Escobedo, Vairo, PVG)
5JHEP 11 (2018) 088 (Kim, Petreczky, Rothkopf); Phys.Rev.D 100 (2019)

7, 074506 (Larsen, Meinel, Mukherjee, Petreczky).
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Evolution

▶ Gaussian-smeared delta initial state

ψℓ(t0) ∝ r ℓe−r2/(0.2a0)2

▶ initialize wave function at t = 0; evolve in vacuum until
initialization of coupling to medium at t = 0.6 fm; evolve in
vacuum when local temperature falls below Tf = 190 MeV

▶ medium evolution implemented using a 3 + 1D dissipative
relativistic hydrodynamics code using a realistic equation of
state fit to lattice QCD measurements

▶ approximately 7− 9× 105 physical trajectories
▶ production point sampled in transverse plane using nuclear

binary collision overlap profile Nbin
AA(x , y , b), initial pT from an

E−4
T spectrum, and ϕ uniformly in [0, 2π)
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Homework 1: Reaction Rates
▶ in-medium width calculated in pNRQCD:

⟨1S |Γ|1S⟩ = 3a20κ
{
1− 2N2

c−1
2(N2

c−1)
E
T + (2N2

c−1)2

12(N2
c−1)2

(
E
T

)2}
▶
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Figure: The in-medium width of the Υ(1S). Dashed, solid and
dot-dashed curves represent the lower, central and upper determinations
of κ̂(T ) = κ/T 3.



9/13

Homework 2.(a): in-medium Corrections

▶ the heavy quark mass M and the binding energy E are scheme
dependent quantities

▶ M enters our formalism as an input parameter and receives no
medium corrections

▶ we work in the 1S scheme in which M is half the ground state
mass

▶ the Coulombic binding energy is calculated from M and a0:
|E | = 1/(Ma20)

▶ the in-medium mass shift of the ground state is a
non-scheme-dependent, observable quantity; from this, one
can, in principle, extract an in-medium correction to M and to
E

⟨1S |δm|1S⟩ = 3
2a

2
0γ
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Ground State Mass Shift
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Figure: The in-medium mass shift of the Υ(1S). Dashed, solid, and
dot-dashed curves represent γ̂ = γ/T 3 = {−3.5,−2.6, 0}, respectively.
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Homework 2.(b): p-Dependence of Γ

▶ we are comoving with the medium, so Γ has no p-dependence

▶ can be added
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Homework 3.(a, b): Suppression for Linear Γ

▶ solve for functional form of κ̂(T ) producing specified linear
Γ(T )

▶ suppression results:
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Figure: Survival probability of the Υ(1S) with linear Γ(T ). “No Jumps”
represents suppression; “Jumps” represents suppression and regeneration.
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Homework 4.(a, b): Ground State Suppression

▶ in-medium ground state calculated taking medium
interactions as quantum mechanical perturbations

▶ suppression results:
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Figure: Survival probabilities of the vacuum and in-medium ground states
in the bottom sector as a function of time t.
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