Munich-KSU Contribution to Suppression and (Re)Generation of Quarkonium in Heavy-Ion Collisions at the LHC

Peter Vander Griend

on behalf of Nora Brambilla, Miguel Escobedo, Ajaharul Islam, Michael Strickland, Anurag Tiwari, Antonio Vairo, and Johannes Weber

> University of Kentucky Fermi National Accelerator Laboratory

> > 12 December 2022

Munich-KSU Approach

- aim: describe the out-of-equilibrium, in-medium evolution of heavy quarkonium states
- tools: potential nonrelativistic QCD (pNRQCD) and the formalism of open quantum systems (OQS)
 - pNRQCD: an EFT of QCD describing the strong dynamics of small heavy-heavy bound states
 - OQS: formalism to treat the out-of-equilibrium evolution of a system (quarkonium) in the presence of an environment (QGP)
- method and results are fully quantum, non abelian, heavy quark number conserving; take into account dissociation and recombination; quantum field theoretically describe the nonequilibrium evolution; depend only on the transport coefficients taken from lattice data

Physical Setup

work with hierarchy of scales: $M \gg 1/a_0 \gg (\pi)T \gg E$

heavy quark mass M is a scheme dependent quantity; we work in 1S scheme

$$M = m_b = m_{\Upsilon(1S)}/2 = 4.73 \,\, {
m GeV}$$

► Bohr radius calculated by solving its defining relation with the 1-loop, 3-flavor running of α_s with $\Lambda_{\overline{MS}}^{N_f=3} = 332 \text{ MeV}$

$$a_0 = 2/C_f \alpha_s (1/a_0) m_b = 0.678 \text{ GeV}^{-1}$$

thermal scale related to temperature of the medium (up to factor(s) of π):

 binding energy is scheme dependent quantity; Coulombic binding energy sets the scale of the spacing of the energy levels

$$|E|=1/\left(Ma_{0}^{2}
ight) =$$
 460 MeV

pNRQCD¹ for in-medium Bottomonium²

$$\mathcal{L}_{pNRQCD} = \operatorname{Tr} \left[S^{\dagger} (i\partial_0 - h_s) S + \tilde{O}^{\dagger} (i\partial_0 - h_o) \tilde{O} + \tilde{O}^{\dagger} \mathbf{r} \cdot g \, \tilde{\mathbf{E}} \, S \right]$$
$$+ S^{\dagger} \mathbf{r} \cdot g \, \tilde{\mathbf{E}} \, \tilde{O} + \frac{1}{2} \tilde{O}^{\dagger} \left\{ \mathbf{r} \cdot g \, \tilde{\mathbf{E}} \,, \, \tilde{O} \right\} \right]$$

singlet and octet field S and O interacting via chromo-electric dipole vertices

 derive coupled evolution equations for singlet and octet density matrices ρ_s(t) and ρ_o(t)

 ¹Nucl.Phys.B 566 (2000) 275 (Brambilla, Pineda, Soto, Vairo)
 ²Phys. Rev. D 97 (2018) 7, 074009 (Brambilla, Escobedo, Soto, Vairo)

Diagrammatic Evolution

singlet evolution given by

$$\frac{\mathrm{d}\rho_{s}(t)}{\mathrm{d}t} = -i[h_{s},\rho_{s}(t)] - \Sigma_{s}\rho_{s}(t) - \rho_{s}(t)\Sigma_{s}^{\dagger} + \Xi_{so}(\rho_{o}(t))$$
$$\frac{\mathrm{d}\rho_{o}(t)}{\mathrm{d}t} = -i[h_{o},\rho_{o}(t)] - \Sigma_{o}\rho_{o}(t) - \rho_{o}(t)\Sigma_{o}^{\dagger} + \Xi_{os}(\rho_{s}(t)) + \Xi_{oo}(\rho_{o}(t))$$

Elements of Evolution Equations

medium interactions encoded in

$$A_i^{uv} = \frac{g^2}{6N_c} \int_0^\infty \mathrm{d}s \, e^{-ih_u s} r^i e^{ih_v s} \langle \tilde{E}^{a,j}(0,\mathbf{0}) \tilde{E}^{a,j}(s,\mathbf{0}) \rangle$$

For (π)T ≫ E, exponentials may be expanded; up to linear order

$$A_{i}^{uv} = \frac{r_{i}}{2} \left(\kappa - i\gamma \right) + \kappa \left(-\frac{ip_{i}}{2MT} + \frac{\Delta V_{uv}}{4T} r_{i} \right)$$

- κ is the heavy quarkonium momentum diffusion coefficient; γ
 is its dispersive counterpart
- $\Sigma_s^{(\dagger)}$ encode the in-medium width and mass shift; state of the art results, $\Upsilon(1S)$ decay width given up to $(E/T)^2$ by

$$\langle 1S|\Gamma|1S\rangle = 3a_0^2\kappa \left\{ 1 - \frac{2N_c^2 - 1}{2(N_c^2 - 1)}\frac{E}{T} + \frac{(2N_c^2 - 1)^2}{12(N_c^2 - 1)^2} \left(\frac{E}{T}\right)^2 \right\}$$

and mass shift by

$$\langle 1S|\delta m|1S\rangle = \frac{3}{2}a_0^2\gamma$$

Extraction of Transport Coefficients

Figure: (Left) Direct, quenched lattice measurement of the heavy quark momentum diffusion coefficient.³ (Right) Indirect extractions⁴ of $\hat{\gamma} = \gamma/T^3$ from unquenched lattice measurements of $\delta M(1S)$.⁵ We solve the Lindlbad equation using the upper, central, and lower $\hat{\kappa}(T) = \kappa(T)/T^3$ curves and $\hat{\gamma} = \gamma/T^3 = \{-3.5, -2.6, 0\}$.

³Phys. Rev. D 102, 074503 (2020) (Brambilla, Leino, Petreczky, Vairo)
 ⁴Phys. Rev. D 100 (2019) 5, 054025 (Brambilla, Escobedo, Vairo, PVG)
 ⁵JHEP 11 (2018) 088 (Kim, Petreczky, Rothkopf); Phys.Rev.D 100 (2019)
 7, 074506 (Larsen, Meinel, Mukherjee, Petreczky).

Evolution

Gaussian-smeared delta initial state

$$\psi_\ell(t_0) \propto r^\ell e^{-r^2/(0.2a_0)^2}$$

- initialize wave function at t = 0; evolve in vacuum until initialization of coupling to medium at t = 0.6 fm; evolve in vacuum when local temperature falls below T_f = 190 MeV
- medium evolution implemented using a 3 + 1D dissipative relativistic hydrodynamics code using a realistic equation of state fit to lattice QCD measurements

• approximately $7 - 9 \times 10^5$ physical trajectories

production point sampled in transverse plane using nuclear binary collision overlap profile N^{bin}_{AA}(x, y, b), initial p_T from an E⁻⁴_T spectrum, and φ uniformly in [0, 2π)

Homework 1: Reaction Rates

in-medium width calculated in pNRQCD:

$$\langle 1S|\Gamma|1S\rangle = 3a_0^2\kappa \left\{ 1 - \frac{2N_c^2 - 1}{2(N_c^2 - 1)}\frac{E}{T} + \frac{(2N_c^2 - 1)^2}{12(N_c^2 - 1)^2} \left(\frac{E}{T}\right)^2 \right\}$$

Figure: The in-medium width of the $\Upsilon(1S)$. Dashed, solid and dot-dashed curves represent the lower, central and upper determinations of $\hat{\kappa}(T) = \kappa/T^3$.

Homework 2.(a): in-medium Corrections

- the heavy quark mass M and the binding energy E are scheme dependent quantities
- M enters our formalism as an input parameter and receives no medium corrections
- we work in the 1S scheme in which M is half the ground state mass
- the Coulombic binding energy is calculated from M and a_0 : $|E| = 1/(Ma_0^2)$
- the in-medium mass shift of the ground state is a non-scheme-dependent, observable quantity; from this, one can, in principle, extract an in-medium correction to *M* and to *E*

$$\langle 1S|\delta m|1S\rangle = \frac{3}{2}a_0^2\gamma$$

Ground State Mass Shift

Figure: The in-medium mass shift of the $\Upsilon(1S)$. Dashed, solid, and dot-dashed curves represent $\hat{\gamma} = \gamma/T^3 = \{-3.5, -2.6, 0\}$, respectively.

Homework 2.(b): p-Dependence of Γ

we are comoving with the medium, so Γ has no *p*-dependence
 can be added

Homework 3.(a, b): Suppression for Linear Γ

- solve for functional form of κ(T) producing specified linear
 Γ(T)
- suppression results:

Figure: Survival probability of the $\Upsilon(1S)$ with linear $\Gamma(T)$. "No Jumps" represents suppression; "Jumps" represents suppression and regeneration.

Homework 4.(a, b): Ground State Suppression

- in-medium ground state calculated taking medium interactions as quantum mechanical perturbations
- suppression results:

Figure: Survival probabilities of the vacuum and in-medium ground states in the bottom sector as a function of time t.

Thank you!